

Orchestrating the Dynamic Adaptation of Distributed Software
with Process Technology

Giuseppe Valetto

Submitted in partial fulfillment of the
Requirements for the degree

of Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2004

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Orchestrating the Dynamic Adaptation of Distributed Software with
Process Technology

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Columbia University,Graduate School of Arts and Sciences,New
York,NY,10027

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

243

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2004

Giuseppe Valetto

All Rights Reserved

ABSTRACT

Orchestrating the Dynamic Adaptation of Distributed Software
with Process Technology

Giuseppe Valetto

Software systems are becoming increasingly complex to develop, understand,

analyze, validate, deploy, configure, manage and maintain. Much of that complexity

is related to ensuring adequate quality levels to services provided by software systems

after they are deployed in the field, in particular when those systems are built from

and operated as a mix of proprietary and non-proprietary components. That

translates to increasing costs and difficulties when trying to operate large-scale

distributed software ensembles in a way that continuously guarantees satisfactory

levels of service.

A solution can be to exert some form of dynamic adaptation upon running software

systems: dynamic adaptation can be defined as a set of automated and coordinated

actions that aim at modifying the structure, behavior and performance of a target

software system, at run time and without service interruption, typically in response to

the occurrence of some condition(s). To achieve dynamic adaptation upon a given

target software system, a set of capabilities, including monitoring, diagnostics,

decision, actuation and coordination, must be put in place.

This research addresses the automation of decision and coordination in the context of

an end-to-end and externalized approach to dynamic adaptation, which allows to

address as its targets legacy and component-based systems, as well as new systems

developed from scratch. In this approach, adaptation provisions are superimposed by

a separate software platform, which operates from the outside of and orthogonally to

the target application as a whole; furthermore, a single adaptation possibly spans

concerted interventions on a multiplicity of target components. To properly

orchestrate those interventions, decentralized process technology is employed for

describing, activating and coordinating the work of a cohort of software actuators,

towards the intended end-to-end dynamic adaptation.

The approach outlined above, has been implemented in a prototype, code-named

Workflakes, within the Kinesthetics eXtreme project investigating externalized

dynamic adaptation, carried out by the Programming Systems Laboratory of

Columbia University, and has been employed in a set of diverse case studies. This

dissertation discusses and evaluates the concept of process-based orchestration of

dynamic adaptation and the Workflakes prototype on the basis of the results of those

case studies.

Table of Contents
1 Introduction... 1
2 Characterization of the Approach ... 15

2.1 A Conceptual Overview of Dynamic Adaptation....................................... 15
2.2 Reference Architecture ... 25
2.3 Perspectives on software coordination.. 31
2.4 Employing processes for software coordination... 40

Orchestration of software composition... 46
Orchestration of agent communities ... 51

2.5 Characteristics of coordination for dynamic adaptation 54
3 Description of the solution.. 63

3.1 Model .. 63
3.2 Architecture... 74

Design of a process-based controller .. 77
Directing actuation.. 84

3.3 Applicability and scope... 89
Applicability scenarios.. 89
Target system feasibility criteria... 97

3.4 Critical assessment of the model... 104
4 Implementation ... 110

4.1 Workflakes v. 1: coding the process in a programming language............ 112
4.2 Workflakes v. 2: employing a process modeling notation........................ 122

5 Experiments .. 131
5.1 Instant messaging service ... 132

Background... 132
Case study description .. 133
Case study results.. 137

5.2 AI2TV.. 140
Background... 140
Case study description .. 145
Case study results.. 153

5.3 GeoWorlds .. 166
5.4 Web services marketplace... 168

6 Evaluation ... 171
6.1 Assessment of the experiments... 174
6.2 Assessment of the Workflakes system.. 183

Coding vs. Modeling Dynamic Adaptation Processes...................................... 184
Interpretation of case study results ... 187

6.3 Limitations and open issues .. 191
6.4 Comparison with the state of the art ... 202

Process-based software coordination.. 202
Alternatives for the coordination of dynamic adaptation 207

7 Conclusions and future work .. 213
8 Bibliography ... 217

i

Table of Figures

Figure 1: Roles in Dynamic Adaptation of Software.. 8
Figure 2: Interactions of dynamic adaptation roles with the target system. 25
Figure 3: Layout of an externalized platform for dynamic adaptation. 27
Figure 4: Representation of a generic process activity. .. 42
Figure 5: Example of workflow specification. ... 43
Figure 6: Inter-relationships between rule-, agent- and process-based coordination

approaches... 59
Figure 7: KX architecture. .. 76
Figure 8: Abstract view of a task processor.. 79
Figure 9: Design of a process-based controller... 82
Figure 10: Interfacing the task processor and the actuation role. 85
Figure 11: Dynamic adaptation scenarios... 95
Figure 12: Representation of a task processor in Workflakes Version 1.................. 117
Figure 13: Representation of a task processor in Workflakes Version 2.................. 126
Figure 14: The IM service architecture... 132
Figure 15: The AI2TV System. ... 147
Figure 16: The AI2TV process in Little-JIL. .. 152
Figure 17: AI2TV - execution time of the adaptation process. 154
Figure 18: AI2TV - missed frames count. ... 159
Figure 19: AI2TV - score distribution... 160
Figure 20: AI2TV - weighted score differences for baseline trial runs..................... 161
Figure 21: AI2TV - comparison of average weighted scores.................................... 162
Figure 22: AI2TV - weighted score differences for non-baseline trial runs. 163
Figure 23: Table of case studies contributions. .. 176
Figure 24: Classification of experiments (distribution dimension). 177
Figure 25: Classification of experiments (real-time). ... 178
Figure 26: Classification of experiments (main operation layer). 179
Figure 27: Table summarizing contributions towards hypothesis H1. 189
Figure 28: Table summarizing contributions towards hypothesis H2. 189

ii

Acknowledgements

I would like to thank many PSL members and alumni, in particular Dan Phung for his

outstanding work on AI2TV and for his reliability, kindness and availability, Matias

Pelenur for his work on the Little-JIL interpreter, Gaurav Kc for early discussions on

Workflakes and Worklets, Phil Gross, Janak Parekh and Suhit Gupta for teaming up

at various junctures (I will remember those transatlantic test and demo sessions for a

long time, and I am afraid they will, too).

I would also like to thank Nathan Combs of BBN for his assistance with Cougaar and

many fruitful discussions. At University of Massachusetts at Amherst, many thanks to

Lee Osterweil for his encouragement and insights, and Sandy Wise for his support

with Little-JIL. Thanks also to my colleagues at Telecom Italia Lab, in particular

Luigi Licciardi and Mario Costamagna for believing in my work, and Elio Paschetta

and Matteo De Michelis for their precious help.

During the course of this research, the Programming Systems Laboratory has been

funded in part by DARPA, monitored by AFRL, F30602-00-2-0611 (DARPA Order

K503) and F30602-97-2-0022 (DARPA Order E101); ONR in cooperation with NRL

N000140110441; National Science Foundation grants CCR-0203876, EIA-0202063,

EIA-0071954, and CCR-9970790; and by Microsoft Research, IBM and NEC

Computers. The work at Telecom Italia Lab was funded in part by EURESCOM

(project P-1108).

The views and conclusions contained in this document are those of the author, and

have not been endorsed by and should not be interpreted as representing the official

policies, either expressed or implied, of DARPA, AFRL, the Air Force, ONR, NRL,

iii

the Navy, NSF, the U.S. Government, Microsoft, IBM, NEC, Telecom Italia or

EURESCOM. The U.S. Government is authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copyright notation thereon.

iv

Dedication

To Roberta, whose unconditional love makes everything possible.

To Pietro and Matteo, who make every day new and precious.

To my parents, for their invaluable support throughout the years.

v

1

1 Introduction

Software systems and services pervade our lives at an unprecedented scale, in great

part thanks to the popularization of the Internet and the distribution and

componentization of a variety of software on top of such a global networking

environment. Software applications are becoming increasingly interconnected and

interoperable, and provide us with a multitude of value-added services, which can be

increasingly devised and offered by composing pre-existing software in new ways.

That trend is likely to continue and become even more explosive in the next few

years, with the emergence of ubiquitous, interconnected communication and

computing facilities, pervading our living environments and embedded in a variety of

devices, as well as of newer distributed computing models that push or transcend the

traditional client/server paradigm (such as multi-tiered architectures, Web Services,

peer-to-peer computing, and Grid computing).

One downside of that scenario is that software systems that provide the value-added

services we are becoming accustomed to are rapidly becoming extremely complex to

develop, understand, analyze, validate, deploy, configure, manage and maintain. The

reasons are twofold. Firstly, each service is likely to rely on a number of integrated

software components, as well as resources (computational power, networking and

data), which may be heterogeneous, loosely coupled, and dispersed to various extents.

Notice how this integration complexity is not only horizontal, i.e., at the application

level, but also vertical, since – in accord with the middleware approach – the final

application sits on top of multiple layers of infrastructure software, each of which is

designed to abstract the layer below and hide its idiosyncrasies. Moreover, analyzing

2

and understanding all the inter-component dependencies of complex, heterogeneous

distributed software systems and their impact on quality is increasingly difficult, and

can become outright impossible if componentization is pushed to its limits. For

example, in a componentized scenario of global scale, multiple services could

dynamically find, bind to, and invoke remotely deployed components and resources

that match their computing needs; thus, they might introduce extremely variable

usage and interaction patterns for said components and resources, whose

consequences would become hardly predictable and even difficult to replicate within

a testing lab.

It is also noticeable that this multifold growth in software complexity occurs at both

the development and the execution phase of the software life cycle. Complexities that

surface at development time can be at times mitigated by taking advantage of certain

insights and best practices in software development, such as component-based

software engineering, which aims at promoting re-use, interoperability and

standardization, or formal specification and design methods, which can help with

describing and reasoning about the various facets of especially complex systems.

Complexities that are related to the post-development phases of the software life

cycle regard managing and ensuring proper quality of service to software systems

once they operate in field conditions. Those complexities are particularly intensified

in a scenario where services are built from a mix of proprietary and third-party

components, so that the control of and the knowledge about the overall system and its

runtime environment does not belong to a single stakeholder.

3

It is well-known that it is quite hard to carry out systematized testing during the

development phase, in order to properly profile and validate the usage of single

components once they are deployed and function on-line in a widely distributed

execution environment; it is even harder to come up with tests for the many possible

interaction patterns of integratable component sets, which may include some third-

party, legacy or COTS elements. That difficulty limits the level of assurance that can

be achieved, in particular with respect to the non-functional characteristics of the

computing entities under test. As a consequence, critical conditions, errors and

failures become manifest only in the field, rather than in the lab, and corrective

maintenance has become an intensive, continuous activity that spans the whole

product lifetime and accounts these days for the majority of software costs. The

abovementioned current trends in large-scale distributed computing are likely to

aggravate this situation.

Furthermore, traditional software management practices occurring in the post-

deployment phase are quite labor-intensive and in the current state of the art still rely

heavily on human analysis and intervention. As such, they are (and will increasingly

become) slow and error-prone, as they struggle to cope with the rate of growth in

systems’ complexity. As a consequence, the reaction to and resolution of faults, mis-

configurations, overload, or other common run-time software mishaps typically

comports some period of service interruption, or at least significant degradation of the

service quality. That translates into further increasing costs and difficulties when

trying to operate large-scale distributed software infrastructures and applications that

4

must continuously abide with certain levels of service, according to their functional

and extra-functional requirements.

The need to respond to the complexity challenge outlined above is gaining

considerable attention as one of the major problems to be faced in Information

Technology today and in the next future, with respect to the engineering of complex

software systems. A number of research initiatives that advocate and investigate new

methods and tools to cope with it have recently been launched under a variety of

denominations, such as on-line validation [56], recovery-oriented computing [121],

steering systems [55], dynamic systems [202], autonomic computing [32], etc.

Those initiatives vary in scope and differ in the conceptual and technical approaches

they advocate. For instance, on-line validation suggests a vision in which systems are

continuously supervised and kept functional and in good shape by some external

means. Recovery-oriented computing emphasizes preventing system faults, or

overcoming them by keeping or returning systems to their full functionality as before

the occurrence of the fault. Steering systems investigate how to develop software

whose operation dynamics and parameters can change as a function of its execution.

Dynamic systems and autonomic computing are principally concerned with making

the software infrastructure and the crucial Information Technology assets of an

organization intrinsically and automatically manageable, taking in account not only

the technical but possibly also the business-related aspects that impact systems

management.

Notwithstanding the differences, the common concept at the basis of all those

initiatives is to automatically and transparently handle complexity as soon as it

5

displays its adverse effects on a system in operation, or even preemptively; the goal is

to keep systems running and providing service within their intended functional and

extra-functional boundaries at all times and in all conditions – possibly save for the

most critical, extreme or unexpected faults. The means is the introduction of

computing provisions for the dynamic adaptation of single components as well as the

overall service. With the term dynamic adaptation, we intend some automated and

coordinated set of actions (expressed as computations) aimed at modifying the

structure, behavior and/or performance of a target software system, at run time, with

no service interruption, and minimal service perturbation. Dynamic adaptation

typically intervenes in response to the occurrence of some condition (or a complex

mix thereof), and has the purpose to ensure the continuous provision of service with

acceptable levels of quality. Examples of adaptations may range from tuning

functioning parameters within a single component in order to influence its isolated

performance, to concerted (re-)configurations of multiple components and

connectors, to component instantiation or migration, to architecture-wide

interventions, such as on-the-fly (re-)instantiation of the service as a whole.

Dynamic adaptation can be seen both as an on-line extension of software maintenance

practices, and as an automation of existing post-deployment management practices. It

can address a set of issues that is potentially quite vast: (re-)deployment, leading to

automated system and service staging and evolution; dynamic (re-)configuration at

different levels of granularity, leading to Quality of Service (QoS) optimizations of

various kinds and self-management, such as availability, scalability, performance;

6

fault recovery and prevention, leading to self-healing; the activation of security

countermeasures, leading to protection from attacks; etc.

The autonomic computing initiative categorizes the various features it seeks to

develop and promote in autonomic systems as self-configuration, self-healing, self-

optimization and self-protection [32]. The “self-“ prefix indicates the focus of

autonomic computing – which is shared by many other similar initiatives - on

building new kinds of systems with intrinsic adaptation provisions that are embedded

into their implementation. Such an internalized approach, however, may suffer from

two major drawbacks: firstly, it promotes an “egotistic” stance, in which each element

in a composite system decides upon and effects dynamic adaptation on its own,

overlooking any end-to-end perspective that embraces the overall system; moreover,

it may prove unrealistic in an IT world in which systems in operation are a mix of

new and old software, with new software a possibly minor portion of the whole, and

with old software often impervious (unless running prohibitive costs) to the kind of

re-hauling needed to make it intrinsically adaptive.

An alternative approach can be called externalized dynamic adaptation, which

operates from the outside of and orthogonally to target applications, without making

any assumptions about the targets’ implementation, internal communication and

computation mechanisms, source code availability, etc. As such, externalized

dynamic adaptation is applicable also to legacy systems. Notice that “legacy” is taken

here in a rather broad sense, to encompass not only pre-existing and “ancient”

software, but also any third-party components, subsystems and entire, self-standing

systems. The targets of the approach can be hence generally characterized as systems

7

of legacy systems, that is, heterogeneous, possibly very large and loosely-coupled

ensembles of components of different origin and varying granularity that work

together towards providing a given service, which must be made autonomic as a

whole. In the remainder, a system of that kind is often referred to as the target system

of a dynamic adaptation facility.

In order to effectively carry out externalized dynamic adaptation on that kind of target

systems, a set of capabilities, or roles, must be present. Among them: monitoring, i.e.,

the ability to provide snapshots of the state of the system and its constituents

(architectural components and connectors, or even finer-grained modules), which

must be sufficiently detailed to capture and expose enough information about any

run-time criticalities to be addressed by the adaptation facilities; diagnostics, i.e., the

ability to analyze said snapshots and find out whether critical conditions have

occurred (or are about to occur) and to point out their cause; decision, i.e., the ability

to figure out what among multiple possible adaptation strategies is the most suitable

for the diagnosed situation; actuation, i.e., the ability to summon and effect on

demand some (re-)configurations or other controlled modifications onto the running

system implementation; and coordination, i.e., the ability to carry out actuations that

impact multiple components in a concerted fashion, as required by the chosen

dynamic adaptation strategy.

8

Target
Software System

Monitoring

Diagnostics Decision
Coordination

Actuation

Figure 1: Roles in Dynamic Adaptation of Software.

Figure 1 shows abstractly how those capabilities defining the dynamic adaptation

roles can be integrated into an end-to-end closed control loop that enables the

superimposition of dynamic adaptation onto the target system from the outside. That

control loop may provide a form of feedback (detect-and-respond, i.e., the capability

to take some action, as a reaction to the occurrence and detection of a target system

condition) and also feed-forward (detect-and-anticipate, i.e., the capability of take

some preventive action, on the basis of the occurrence and detection of events that are

anticipatory of a target system condition, and before it actually occurs). Such an end-

to-end, externalized control loop can address equally well, as its targets, new systems

developed from scratch, legacy systems and systems built by composition, whether or

not they natively take in account dynamic adaptation concerns and features.

The research work presented here proposes an approach for dealing with the

aforementioned coordination role – and in part with the decision role as well - in the

framework of externalized dynamic adaptation. It does not directly address - but

9

rather assumes - the existence of the monitoring and diagnostic capabilities of

dynamic adaptation. Those other two roles are seen as input sources providing data

and triggers to a decision and coordination facility which selects proper adaptation

policies and oversees their execution. Actuation capabilities are also outside the main

conceptual focus of this work, although of course there is a necessarily tight

integration between coordination and actuation capabilities at the implementation

level, given that actuators are the natural subjects of coordination in the afore

mentioned adaptation policies.

The motivation for the focus on coordination comes from the observation that many

existing approaches to dynamic adaptation are local, i.e., they provide adaptive

provisions for a single computing entity in isolation (e.g., a Web server), or at most

for tightly coupled subsystems that are designed and bound to work together (e.g., a

cluster of Web servers). Local adaptations intend to achieve and maintain the

functionality and performance of those entities continuously optimal (or at least

adequate) under variable conditions. Those local optima are irrespective of any larger

application context, according to which an adaptive computing entity may become a

component in a more complex, often distributed, system. To exert dynamic adaptation

internally to a single component, monitoring, diagnostics, decision and actuation

capabilities are therefore sufficient, and coordination can be forsaken. Coordination

becomes instead critical when the target of dynamic adaptation is a multi-component

application, which may or may not include some intrinsically adaptive elements (e.g.,

a classic three-tiered system made of a front-end clustering facility, multiple Web and

application servers participating in the cluster as the mid-tier, and a back-end data

10

storage). The goal in that case is to maintain the target application as a whole within

adequate quality parameters Such an end-to-end adaptation can emerge from finer-

grained adaptations such as those carried out on single components, only if they are

opportunely orchestrated towards that global goal. Notice how also the connotation of

the decision capability changes, since it must also become global, to take in account

the “bigger picture” of the overall target application, and may thus need a whole new

degree of sophistication and knowledge: per-component decisions leading to local

optima may not be adequate anymore, or may even be counter-productive in the light

of an end-to-end dynamic adaptation scenario.

To investigate those themes, this research proposes using distributed process

technology as a software coordination paradigm that allows to automate the

orchestration of a cohort of software actuators (also known as effectors), which must

work together to establish or maintain the intended configuration, functionality and

behavior of the system that is subject to the dynamic adaptation.

Process (often referred to also as “workflow”)1 technology provides suitably

sophisticated coordination facilities, since it provides the high-level, abstract and

explicit concept of a multi-step process, with each step representing a task, activity, or

unit of work, and with steps connected by control and data flows. Processes can

appropriately capture complex, end-to-end adaptation strategies, composed of a

number of inter-related actuations that bring some intended side effects on various

parts of the target system, and that need to respect complex logic and sequencing

dependencies: a process lays out an explicit, global picture of the entire adaptation

strategy in terms of more refined activities and fine-grained interventions. Process

1 In the remainder, the terms process and workflow will be used in an interchangeable manner.

11

description formalisms are flexible with respect to the type of coordination model

enforced, and often offer powerful constructs to handle dynamic dependencies,

contingency planning and compensating actions. Furthermore, the state of the art in

process technology offers enactment engines that can integrate a variety of actors,

support heterogeneous environments and technologies, and address large-scale

distribution issues. Therefore, via the enactment of an appropriately codified process,

a process engine can orchestrate the execution of actuations by a variety of diverse

effectors on dispersed components.

In this work, we present and discuss thoroughly the model, architecture, and

implementation of such a process engine – named Workflakes [7] [8]. Workflakes has

been developed in the context of a dynamic adaptation platform named Kinesthetics

eXtreme (KX) [5] [6], developed by the Programming Systems Laboratory of

Columbia University. The KX architecture embodies the externalized control loop

shown in Figure 1, and includes – besides Workflakes – complementary facilities for

monitoring, diagnostics and actuation [122]. KX remains orthogonal and disjoint

from the target systems it is superimposed onto; hence, it promotes the separation of

dynamic adaptation from other concerns intrinsic to the target application, can be

applied to legacy systems, and can still cooperate with and take advantage of any

built-in autonomic features in an end-to-end perspective.

Workflakes is located at the core of KX, that is, at the juncture between the

monitoring / diagnostics “front end”, and the actuation “back end” of the control loop

provided by the KX platform. Workflakes is implemented as a decentralized process

enactment engine based on the open-source Cougaar project [25]. Workflakes

12

includes a general-purpose application programmatic interface (API) to guide

computational units that implement KX effectors, via a number of abstract control

and reporting primitives. Furthermore, it fulfills the decision role of dynamic

adaptation either internally or by calling external decision-making facilities that

capture and evaluate domain-dependent knowledge to elaborate decisions.

In the context of KX, Workflakes has been experimented with and validated in a

number of case studies. Those experiments pertain to a variety of application

domains, from large-scale information systems, to e-commerce, to personal

communication services, to group multimedia provisioning, etc. They tackle different

aspects of the dynamic adaptation problem space, from improving QoS, to handling

management complexities, to enhancing performance, enforce correct behavior, etc.

Those case studies are presented in detail in this document; their evaluation provides

qualitative and quantitative information about the benefits that externalized dynamic

adaptation in general, and more specifically the process-based coordination of

adaptation, can have on their targets. Those benefits are described in terms of various

quality factors that pertain to the goals of each case study and to the operation of the

target application and the service it provides, such as reduced efforts and costs,

increased efficiency for activities like deployment, management and maintenance,

improved service reliability and availability at run time, enforcement of correct

system behavior, improved performance and so on. The achieved benefits are also

evaluated with respect to the amount of additional development effort, system

complexity, and performance overhead introduced by superimposing externalized

dynamic adaptation upon the original system.

13

The experimental work on Workflakes intends to demonstrate two major hypotheses

that have originally motivated this research [9]: in the first place, that it is feasible and

effective to employ an external infrastructure to retrofit pre-existing software systems

and components thereof with dynamic adaptation features; furthermore, that state-of-

the-art decentralized process / workflow technology can fulfill the requirements of the

coordination role of such an externalized infrastructure, and can exert highly complex

forms of orchestration and control on distributed software ensembles, as required for

dynamic adaptation. This latter result can be generalized to other application domains

that have in common with the realm of dynamic adaptation similarly demanding

coordination requirements; for example, how to dynamically determine, initiate and

guide some form of “impromptu” cooperation within a group of existing, distributed

software entities, in order to satisfy the provision of some service on demand (see for

example [123], [124], [125]).

This document addresses the various issues outlined in this Introduction. First of all it

provides an exhaustive presentation of the approach: it starts with an overview of the

most important conceptual aspects of dynamic adaptation; it continues with the

description of a generic externalized architecture for dynamic adaptation [57], as it

has emerged from the joint design work carried out by participants in the DARPA

DASADA program [56], under which much of this research was developed, and with

a discussion of process / workflow formalisms and technology in the context of the

major recognized paradigms employed for software coordination; it then analyzes the

requirements of coordination related to the domain of dynamic adaptation and how

process technology can fulfill them.

14

The document continues with the presentation of the choices taken in this research,

and the model that derives from them, discussing its rationale, advantages and

limitations. The description of the design and implementation of the Workflakes

process enactment engine for the orchestration of dynamic software adaptation, in

compliance with that model, follows.

Coming to the evaluation of the work, the document firstly describes a selected set of

case studies in dynamic adaptation involving Workflakes and KX, and then uses their

results to assess the major strengths and weaknesses of the approach. Finally, it

outlines the contribution of this work in comparison to the state of the art, and

forecasts possible paths for future research.

15

2 Characterization of the Approach

The purpose of this Section is to introduce the major concepts that underlie this

research. It begins by providing an overview of dynamic adaptation. Then it describes

a reference architecture for a platform that aims at superimposing dynamic adaptation

from the outside of a target system. To provide motivation for the usage of processes

for the orchestration of dynamic adaptation, it discusses a variety of results in

software coordination, and the fit of process technology as a software coordination

paradigm. Finally, it outlines the major requirements for a coordination facility for

dynamic adaptation and matches them with the characteristics of process technology

and of other candidate paradigms, in particular rule-based and agent-based systems.

2.1 A Conceptual Overview of Dynamic Adaptation

Dynamic adaptation can be exerted in a number of ways, which can considerably vary

in granularity and scope; moreover, a number of options exist on how their

implementation can interrelate with the implementation of the system to be adapted.

With respect to granularity, each single software component may be developed to be

adaptive in itself, i.e., for self-diagnosis, self-configuration, self-tuning, self-repair,

and so on. An example regards a simple client/server architecture: the request

handling component in a server (such as a Web or application server) can be designed

to efficiently handle peaks in incoming requests from clients, by activating particular

threading and scheduling policies that replace those employed in normal conditions,

as a consequence of the detection and for the duration of a peak.

16

Adaptive features at the granularity of the single component are likely to do a good

job if employed in isolation, i.e., to achieve and maintain a “local optimum” with

respect to the quality of service provided by that component under a variety of

circumstances. For complex systems built from multiple inter-connected components,

however, it is not always the case that a combination of local optimizations provides

the best adaptation solution across the board. Extending on the example above, if two

separate server components, which happen to live on the same host, both react to a

request peak for the overall service by increasing their parallelism and spawning

additional threads for servicing their respective request queues faster, they might in

fact end up in a resource contention situation with respect to the host CPU, thus

possibly contributing to deteriorate the quality of service, rather than enhance it. That

can happen even if those co-located components belong to different applications,

which may be a common case for example in server farms or data centers devoted to

the provision of multiple services (in fact, many autonomic computing efforts – in

particular industrial ones - are directed towards the automated managements of those

data centers, as well as the various applications that are hosted there).

In response to certain conditions, internal adaptive mechanisms are therefore not

sufficient and can be, on the contrary, counter-productive; it may be necessary to

come up with a global adaptation strategy – at the granularity of the target system as a

whole - in which finer-grained, local adaptations assume merely a tactical role and are

orchestrated and balanced with respect to one another in accord with an overall

strategy. In the example above, an alternative form of dynamic entailing more global

re-configurations and optimizations would be deploying other server components and

17

clustering them together with the one that has trouble servicing incoming requests fast

enough.

Notice that there is an interesting parallel here: dynamic adaptation at the target

system level builds upon adaptive features made available at the component level,

very much like the target system itself is built on top of the various functional

features of components; furthermore, like an application logic is necessary to provide

the glue that holds the system together and makes it work in the intended way, some

overarching logic is similarly necessary, to express and guide the dynamic adaptation

of the whole system as a combination of adaptations impacting subsets of components

and their connectors in an orderly way.

Another interesting aspect is whether dynamic adaptation features should be

embedded within or superimposed upon the target software, i.e., internalized vs.

externalized dynamic adaptation. The former approach assumes significant planning-

ahead and effort on the part of the design and development team and is thus

particularly effective for new developments, while the latter intends to remain

orthogonal to the development of the target system, as well as to its main

computation, control and communication facilities, and can be in principle

superimposed a posteriori on non-adaptive as well as partially adaptive target

systems.

Internalizing adaptive features at the component granularity level can be achieved in a

variety of ways, which range from hardwiring fault-tolerance features within the code

of a recognizably critical component (perhaps a posteriori, as a result of corrective or

perfective maintenance), to more systematic approaches, which can be characterized

18

as “design for adaptation”. That practice attempts to analyze and address at an early

stage the criticalities within a component, and to equip it by design with flexible

mechanisms that allow to effect suitable adaptation policies, possibly from a portfolio

of options. For instance, aspect-oriented development methodologies [126] can be

employed to that end: adaptive features would be then regarded from the start as

software aspects, that is, concerns that need to remain separated and orthogonal in the

development of a given component. They could then be designed and implemented in

a modular fashion, with respect to other functional or extra-functional concerns

relevant to the same component. That approach is advocated for example by [190]. A

number of other approaches are being actively investigated, and design techniques

and architectures that explicitly support adaptive concerns gets increasing levels of

attention (as demonstrated, for example, by the success of a recent forum like the

ICSE Workshop on Software Architectures for Dependable Systems [191] [192]).

Internalizing dynamic adaptation features at coarser granularity levels than a single

component, that is, encompassing functional sub-systems or even the target system as

a whole, is a more complicated endeavor, and the attention and effort devoted to it at

design time is critical. A way to achieve it is embedding adaptive facilities within the

very computing infrastructure – the middleware - upon which the distributed target

system is built. A number of middleware platforms have been conceived, which offer

some set of dynamic adaptation capabilities as a premium for applications built with

and operating on top of themselves. An adaptive middleware can either be developed

ad hoc, such as Conic [3] and Polylith [1], which are among the earliest middleware

prototypes providing support for the dynamic reconfiguration of the architectural

19

layout and the interconnections of distributed applications; or it can represent an

enhancement of some established or standard computing platform with additional

features to address certain aspects of dynamic adaptation. For example, 2K / dynamic

TAO [2] can reconfigure the real-time TAO ORB [127], which in turn offers features

and policies for the optimization of basic CORBA services; BARK [4], instead, can

be used for dynamic (re-)deployment of Enterprise Java Beans components.

Internalized solutions, especially if properly accounted for since early design, can

extensively cover and keep under control a wide spectrum of dynamic adaptation

concerns . However, they also have several limitations, in particular when viewed in

the context of large-scale, heterogeneous, component-based systems.

For example, the hardcoding of specific adaptive provisions at the component

granularity can many times limit the set of adaptations that can be carried out without

re-building the target, whereas they may need to change for various reasons, for

instance because of unexpected component usage, or because they may not be

flexible enough to harmonize with system-wide adaptation policies. Built-in dynamic

adaptation code also tends to make each component more complex, and thus intensify

maintenance and evolution difficulties.

Moreover, when internalized adaptation is implemented end-to-end – for example via

an adaptive middleware - all service components need to be assembled from the start

according to that middleware and the computing model it offers. This introduces a

rather strong dependency between the actors and subjects of dynamic adaptation.

And, of course, the spectrum and granularity of possible adaptations remains still

20

restricted by the set of adaptation primitives made available by the specific

middleware.

But possibly the most important criticism concerning internalized dynamic adaptation

regards third-party composition. When the target system includes legacy, commercial

off-the-shelf (COTS) or otherwise third-party components, which may often be the

case in large-scale distributed systems, internalized adaptation can be exerted only on

those portions of the overall system that are developed either to be intrinsically

adaptive, or to comply with the computing model of an underlying adaptive

middleware. Third-party elements that might be critical for the overall system may be

left out: in such a scenario, achieving a comprehensive and coherent end-to-end

dynamic adaptation of the target becomes harder.

In contrast, an externalized dynamic adaptation solution aims at retrofitting

components and entire systems with the desired reconfiguration, self-healing, self-

management, etc. capabilities, independently from ownership considerations. The

externalized approach applies in principle equally to legacy systems or systems built

by composition, and to newly developed systems, since its characteristic is to remain

orthogonal with respect to the adaptation target.

Although externalized dynamic adaptation is quite general in principle, its feasibility

is limited by a couple of critical pre-requisites: the availability of mechanisms to

carry out the monitoring and actuation upon the target system. Among the major

capabilities needed for dynamic adaptation mentioned in Section 1, monitoring and

actuation are crucial since they represent unavoidable points of contact with the

adaptation target. While internally adaptive systems and components provide those

21

capabilities by nature, an externalized dynamic adaptation facility must assume and

count on either the availability of accessible monitoring and actuation features (which

can be built in the legacy components to be adapted, or offered by their execution

environment), or alternatively the possibility to programmatically extend those

components to expose enough monitoring and actuation points for its purposes.

The granularity of the monitoring and actuation functionality exposed to an

externalized facility is also very important. Dynamic adaptation must be able – in the

most general case – to acquire data and intervene at all of the following granularity

levels:

• On entities that can be recognized inside a single component; for example, on

single parameters or modules that influence some aspect of the component

functionality.

• On a component in isolation, for example to instantiate or take down a

component.

• On subsystems, i.e., set of interrelated components: for example on the connector

managing the interactions of two communicating components.

• On the target system as a whole: for example for the (re-)deployment of the

system in a given configuration.

Therefore, an externalized dynamic adaptation platform should strive to have

monitoring and actuation facilities that cover all the levels above.

Those pre-requisites are less demanding than they may appear, as a spectrum of

options to comply with them is available most of the times. First of all, monitoring

and actuation may be offered natively to a certain degree. That happens for example

22

in a large amount of commercial software products that choose to implement and

expose some management facilities, either constructed ad hoc or – increasingly

common – in compliance with established frameworks, such as SNMP [128] which

defines general-purpose networked entities for passive (monitoring) and active

(actuation) management of hardware and software, JMX [129], which provides

similar management facilities specifically for Java-based software platforms and

applications, WBEM [130], which defines guidelines and technologies for

standardized Web-based management of enterprise computing environments, WMI

[131], which adopts WBEM for the unified management of Windows environments

and applications running upon them, or others. Those frameworks also typically

provide means to extend and customize the native basic facilities, to cover particular

needs with relative effort and without modifications to the target components.

For software that sits on top of some middleware platform, it is also generally

possible to come up with other components devoted to intercepting and manipulating

middleware interactions as needed, as shown for example in [10], thus enabling the

monitoring and actuation of the architectural connectors of the target system.

Even more commonly, a lot of software offers integration or extension means, in the

form of some APIs, which allow the interconnection with other software. That way,

wrappers of different kinds can be developed to exert some form of monitoring and

actuation, limited to whatever features of the target can be reached through the

exposed APIs.

Furthermore, numerous techniques for code instrumentation that augment the target

system can be used, either as an alternative or a supplement to the ones outlined

23

above. Although such lower-level techniques may represent the most powerful kind

of tool for exerting ad hoc monitoring and actuation on generic software that does not

natively provides those capabilities in any other way, they typically demand a

significant deal of knowledge of the innards of the target. Instrumentation often

assumes source code availability, such as for instance in AIDE [63]. Other techniques

enable to work on object code (like for example ProbeMeister [64] for Java byte

code, or mediating connectors [65] for WIN32 library wrapping), rather than source

code; however, even those techniques may need to be guided by a detailed knowledge

of the software to be instrumented, down to the level of how certain invocation chains

relate to the behavior and functionality of a given component.

Limited to the monitoring role, increasingly used logging and log inspection facilities

[133], as well as tools for the inspection of network traffic (such as Antura [132]), can

also provide a wealth of raw data about various facets of application behavior.

Finally, operating system-level facilities can be typically exploited as low-level

means for coarse-grained monitoring and actuation, with respect to processes and

main system resources.

These issues will not be discussed in further detail – except when presenting the

implementation of the Workflakes within the KX prototype and the relative case

studies - since they do not represent a major focus of this research. However, notice

how the availability of any of the approaches outlined above, or of a combination

thereof, may satisfy the externalized dynamic adaptation pre-requisites of monitoring

and actuation in a large number of cases. In practice, only software components that

constitute complete black boxes, use totally proprietary interaction protocols, and

24

furthermore do not permit any interactions except the ones mandated by their role

within the target application are impervious to be monitored or actuated.

While – as discussed above – monitoring and actuation are necessarily tightly coupled

with the target system, its features, its technological underpinnings and its

implementation, the other major capabilities of dynamic adaptation, i.e., diagnostics,

decision and coordination, can remain disjoint from any such consideration.

Figure 2 is a variation of that highlights the dependencies and the data /

control flow between the various dynamic adaptation roles and the target system; it

graphically suggests how the diagnostics, decision and coordination roles are those

that mark most clearly the separation between the system to be adapted and the

system exerting the dynamic adaptation. That separation also means that in an

externalized dynamic adaptation platform, multiple approaches to achieve

diagnostics, decision and coordination can be used, and that the options chosen would

strongly characterize that platform. Conversely, the choice of how to fulfill the

monitoring and actuation role may often be dictated by the nature and technology of

the target system

Figure 1

That vision of target-independent diagnostics, decision, and coordination does not

imply that those capabilities can be achieved within a specific dynamic adaptation

application independently of the characteristics of the software system to be adapted.

In fact, the implementation of the diagnostic, decision and coordination mechanisms

must be customized and informed each time with knowledge modeling the problem

logic and the environment at hand. That knowledge about the target system must be

represented in a format that is understood by all of those roles, and kept in a

25

repository that is accessible to, but remain independent from them. That way, it is not

necessary to embed knowledge about the target system directly in the diagnostics,

decision and coordination role, but it is possible to develop generic facilities which

are supported by behavioral models and corresponding tools. (More details on

behavioral models and their importance, in particular in the context of externalized

dynamic adaptation, are provided in Section 2.2).

Target Software
Actuation System

Monitoring

Sensors data Effectors commands

Decision Coordination Diagnostics

Figure 2: Interactions of dynamic adaptation roles with the target system.

2.2 Reference Architecture

It is useful at this point to introduce a reference model for the architecture of an

externalized dynamic adaptation platform, in order to make more concrete the

intuition at the basis of the closed control loop vision, as well as the discussion of the

various roles participating in it and of their inter-relationships (shown in Figure 2).

That reference model is also referred to in the remainder as a conceptual architecture

for externalized dynamic adaptation, since it provides high-level as well as

26

operational blueprints, to which the design and the implementation of concrete

software platforms should adhere.

One of the major joint undertakings in the DARPA DASADA program [56], under

which this research was developed, was to come up with such a conceptual

architecture, with an additional requirement regarding its generality. An externalized

dynamic adaptation infrastructure needs to be applicable in diverse usage and

technological contexts; therefore great attention must be paid to its interoperability

with a variety of adaptation targets. Such generality in turn can be achieved via

standardization of the interactions and – consequently – the interfaces between the

platform components. Standardization enables to choose among possibly different

approaches and techniques that can be used to fulfill each of the major dynamic

adaptation roles, and to accommodate more easily within the model those that best

suit the target system. In the DARPA DASADA program, much work has been

devoted to the development of proposals for standard, target- and implementation-

independent APIs for sensors2 [58] and gauges [59], which are, as we will see, the

platform elements fulfilling respectively the monitoring and diagnostic role. The

decision and control roles in a dynamic adaptation platform are however less well

understood, thus remain further from standardization.

As a result, a reference model was originated, as a common proposal by a consortium

of researchers participating in DASADA, as explained in [6] [57].The goal of this

model is the full automation of adaptations that must be carried out on the target

system. Therefore, it operates at level 4 (out of 5) of the autonomic capability model,

as defined in [32], which addresses the resolution of technical aspects relative to

2 Sometimes also referred to as probes.

27

automation, but does not take in account or integrate in the control loop any business

or organization-wide concerns (addressed instead in level 5).

Figure 3

Figure 3: Layout of an externalized platform for dynamic adaptation.

 depicts the resulting conceptual architecture: the major elements constituting

the architecture are identified, while no assumption of any kind about the target

system is made.

B
E
H
A
V
I
O
R
A
L

M
O
D
E
L
S

Sensors

Gauges

Controllers

Effectors

Target System

Diagnostics

Actuation

Decision
and

Coordination

Monitoring

Notice how the externalized dynamic adaptation platform remains physically and

logically distinct and separated from its target, although some of the platform

elements may be co-located with target components; in particular, sensors and

effectors, which respectively fulfill the monitoring and the actuation roles of dynamic

adaptation, represent the contact points between the platform and the target system

and are most likely co-located. However, since the feedback loop is handled outside

of the target application, it is possible to maintain a clear separation between a wealth

of reusable, common adaptation mechanisms and the target system specifics.

28

The conceptual architecture in follows a layered style, which allows to

clearly separate – visually but, more importantly, logically - the various roles (a

similar separation of concerns is advocated in other dynamic adaptation initiatives,

such as [60]). The layered architecture also enables to highlight the interactions

among the dynamic adaptation roles and the corresponding platform components. In

the Figure, data exchanges are represented by solid arrows and by horizontal lines of

communication (or buses) among layers; the two buses in the conceptual architecture

(the Sensor and Gauge Bus) represent logically distinct communication elements,

each devoted to interfacing only certain architectural components through the

transport of specific kinds of information. In an implementation, the same physical

communication facility could be used for all logical buses. Control interactions are

represented instead by dotted arrows, and indicate the path along which the dynamic

adaptation interventions occur.

Figure 3

The monitoring layer first gathers information from the running target system, by

instrumenting it with sensors. Sensors, which should be minimally invasive, typically

generate times series of events containing raw local data, and report via a Sensor Bus

to the diagnostic layer. There, information is filtered, aggregated, correlated and

evaluated by gauges, and findings – that is, abstract semantic events recognized from

complex event patterns - are reported to the Gauge Bus. Then the decision and

coordination layer analyzes the implications of the gauge findings with respect to the

target system functioning and performance, and makes decisions on whether to carry

out some dynamic adaptation(s). Adaptation actions would be performed at the

actuation layer, under the orchestration of one or more controllers. Implementation-

29

level effectors would thus adapt (i.e., reconfigure, repair, tune, etc.) individual

components, as well as connectors and other substructures, of the target system.

Notice how according to this design, actuations can in principle occur not only on the

target system, but also on elements of the same dynamic adaptation platform, such as

gauges and probes. That is intended to provide the dynamic adaptation platform with

dynamic meta- or self-adaptation capabilities (for instance, for on-the-fly re-

configuration of sensors or gauges), whose significance will be discussed further in

Section 6.3.

Notice also how the view provided in in fact combines the decision and

coordination roles within the controller components of the platform. Controllers

receive and interpret gauge output, perform decision analysis, choose adaptation

strategies, and coordinate appropriately the work of effectors. Decision and

coordination can be in principle as well as in practice kept separated in the

architecture. Anyhow, they are inherently closely inter-related, and combining them

offers the potential for continual and incremental steering of the adaptation: the

controller can immediately consider intermediate outputs originated from effectors’

work as well as gauges, which can potentially lead to on-the-fly modifications of the

adaptation plan itself.

Figure 3

The conceptual architecture also highlights the importance and pervasiveness of

knowledge coming from formal (i.e., machine-readable) behavioral models of the

target system: in fact, that knowledge can be employed to drive the target

instrumentation with sensors; to contextualize the interpretation of collected

information by gauges; to inform decisions taken by controllers; to guide how they

30

must orchestrate the work of the effectors; and to store the actual repair plans to be

executed. That formal knowledge can be captured and made available to the dynamic

adaptation architecture via suitable notations and models, which must encompass

numerous aspects of the target system, like functional and non-functional properties,

protocols, architecture, distribution layout, etc.

One would be hard pressed to indicate a single form of modeling as the most suitable

for capturing such a multi-faceted knowledge; it is indeed possible that those various

concerns are better captured not by a single, but by multiple complementary

representations. Also, dynamic adaptation does not have complete, a priori target

analysis and modeling as a pre-requisite. Models can instead be developed piecemeal

and selectively, with respect to those target substructures and facets that are relevant

to each dynamic adaptation application. Model knowledge could also emerge as a

result of the accumulation of monitoring information, upon which inference about the

run-time structure, properties and behavior of the target system could be conducted

dynamically, like in Software Surveyor [66]. Furthermore, although it is certainly

desirable to leverage any pre-existing codified knowledge (deriving, for example,

from design artifacts of the target), or to develop exchangeable models in some

unified formalism or set thereof, that effort may not be necessary. In particular, since

at the current stage of the art no consensus exists on standards for modeling

distributed software applications in relation to their dynamic adaptation, even

proprietary models constructed and maintained internally by each platform element

that necessitates them can serve well. Software modeling connected to dynamic

adaptation is the subject of a lot of active research; for example, like in [61] [62], it

31

can be fruitfully approached from the perspective of Architecture Description

Languages (ADLs) and tools, by extending them to cover issues related to capturing,

checking and guiding the evolution of run-time software architectures. Further

discussion of such modeling issues is in general outside the scope of this work, except

what regards enactable models of coordination, which are discussed extensively in

Sections 2.3 to 2.5.

The Kinestethics eXtreme (KX) platform developed at the Programming Systems Lab

of Columbia University complies with the conceptual architecture discussed above. In

particular, in KX, the decentralized Workflakes process enactment engine has been

chosen for the controllers. That approach effectively constitutes an application of

process / workflow technology as a software coordination paradigm. The motivation

for that choice can be explained by describing the major requirements of a

coordination facility for externalized dynamic adaptation, and how workflow fulfills

them. To introduce that discussion, an overview of some other approaches to the

coordination of the behavior of software applications must be provided first.

2.3 Perspectives on software coordination

In Computer Science, there have been numerous efforts devoted to studying general-

purpose abstractions and formalisms that can be employed to express coordination

separately from computation concerns, and that can be applied in multiple application

domains. This trend was perhaps initiated by Carriero and Gelernter [96], who

proposed the strict separation of concerns between coordination and computation in

programming languages. They define coordination as “the process of building

programs by gluing together ensembles of active entities”; a coordination model

32

takes the role of the glue that binds together the computational activities carried out

by the entities in the ensemble, and a coordination language is the linguistic

embodiment of a coordination model, offering facilities to express synchronization,

communication, creation and termination of the coordinated computations. A seminal

example of a pure, general-purpose coordination language is Linda [97] [98]. Linda

provides a set of simple, generic but powerful linguistic constructs and architectural

abstractions for the coordination of distributed systems and parallel programs. The

Linda coordination model is founded on the concept of a tuple space, i.e., a global

shared data structure that serves as the only mediator of the interactions among all

components of the system. The tuple space model, which owes much to the classic

blackboard architecture [99] [100] of many Distributed Artificial Intelligence (DAI)

systems, effectively provides an elegant architectural style for distributed systems.

Since the coordination model promoted by Linda can be implemented easily on top of

most conventional programming languages [137] and is application domain-neutral,

Linda has become a reference point for new coordination models and languages, and

the origin of numerous variations, derivations, and specializations in a myriad of

Linda-based models and systems, including commercial implementations, such as the

JavaSpacesTM [101] by SUN Microsystems.

Those models all share with the original Linda the trait of being data-driven, as

opposed to control-driven [102]. In data-driven approaches, the coordination facilities

are typically added on top of a “host” computational language: the coordination

statements result often intertwined with the computational statements and usually rely

on data coming from computation results to implement and regulate communication,

33

synchronization etc. As a consequence, the coordination model is likely to remain

implicit. In control-driven approaches, instead, coordination means remain

linguistically separate from computational ones: that forces a clear separation

between coordination and computation, and “pure” coordination-based controllers

can be explicitly developed.

Many programming languages tackling data- as well as control-driven coordination

have been conceived in the last decade, warranting – among other things - an

international conference series (see [146]). However, some interesting perspectives to

the study and application of coordination in computing have also been contributed by

other disciplines, besides programming languages.

For example, across the years, a number of initiatives in the Software Engineering

community have been devoted to specifying, modeling and developing computing

systems by focusing on describing their interactions, following the recognition of the

importance of the concept of architectural connectors between components [104].

Those approaches have evolved from Module Interconnection Languages (MILs)

[138], to Megaprogramming [140], to Architecture Description Languages [103], and

– at the same time – from bottom-up to top-down, from imperative to declarative, and

from implementation- to specification-oriented tools. MILs were intended as tools for

programming-in-the-large [139]; they operated at the implementation level, and

would generate system-specific code for tying together already implemented

components.

Megaprogramming languages, such as CLAM [193], have a similar approach, but

focus on the interoperation within large meta-systems made of megamodules (that is,

34

systems-of-systems), and take a more abstract perspective, with a few primitives that

describe mainly how to schedule the invocations among megamodules. Both MILs

and megaprogramming advocate a largely imperative, compositional and bottom-up

approach to the specification of coordination, addressing mainly the development of

glue code among computational components, which implements the coordination

directives.

ADLs provide formalisms that predicate and reason about software architectures

[141] [142], in terms of components, connectors and their instantiated configurations.

Their main goal is to provide a high-level, top-down view – a blueprint - of a

distributed software system. As observed in [104], connectors are the loci in ADLs

for expressing coordination: since the nature of all interactions within an architecture

is captured by connectors, different types of connectors can be modeled with enough

detail to define and support different coordination models, and, once instantiated in a

given system configuration, to determine the coordination aspects regulating the

behavior of a distributed software system. ADLs have mainly declarative

connotations, and are primarily used as specifications tools, even if they

incrementally tend to extend their guidance from design onto the later phases of the

SW development process [203]. A further push towards the investigation and the

extension of ADLs as languages that enforce the features of the architectural model

(including coordination) onto a running implementation of that model in the post-

deployment phase is only at the beginning [61] [62].

Another discipline that has been investigating software coordination themes is that of

multi-agent systems. Multi-agent systems are rooted in Distributed Artificial

35

Intelligence (DAI); however, in the context of the affirmation of the Internet as the

dominant information as well as computational global infrastructure, agents are

increasingly being applied also to mainstream application domains, including the

gathering and processing of widely distributed information, data mining, document

management, electronic commerce, and others [14].

Therefore, nowadays, numerous state-of-the-art distributed systems are organized and

operate as a community of software agents: agents are “smart” and “active”

components, which may have characteristics such as substantial autonomy, awareness

and knowledge of the application domain, some degree of reasoning and decisional

power, sometimes code mobility, and more [143]. In such a scenario, in which agent

communities may be self-organizing to a degree, the coordination model can be

dynamically influenced by the very subjects of coordination. That contrasts with more

traditional coordination approaches that adhere to a view in which components are

only passive subjects of coordination.

In multi-agent systems, coordination concerns remain well separated from

computations by nature: an agent application is largely defined in terms of the

cooperation pattern that spans the various agents. Each agent has its functional

specificity and a set of computational capabilities, which may be very different from

those of other agents: the agents in a community contribute those capabilities in a

coordinated way, in order to perform distributed computations and to achieve some

overarching result or goal, or offer some service.

The goals of an agent-based application and the ways to pursue them can be

expressed in many ways. Generally speaking, the cooperation among the agents

36

towards their goal is carried out via a series of agent-to-agent interactions, with agents

requiring services to each other on the basis of their current knowledge about the

other agents’ capabilities, their state, the state of the distributed computation, and its

“distance” from the intended goal.

Strategies (or plans) are the typical means to express the converging behavior of an

agent community towards its computational goal. How agents interpret and execute a

plan depends on the underlying coordination model and the corresponding Agent

Coordination Language (ACL) [17]. The theoretical foundations of most agent

coordination languages are generically rooted in speech-act theory [115] [116]; in

some of the most prominent ACLs, such as KQML [18], or FIPA [110], that

derivation is clearly visible, since they are based upon a set of semantically

standardized communication acts. However, the spectrum of coordination paradigms

in use in agent-based systems is wide [13]. Depending on the characteristics of the

agent infrastructure as well as of the application domain, agent coordination may be

implemented with – among others - general-purpose coordination models such as

tuple spaces, scripting languages, rule bases, and also decentralized process planning

and enactment (as will be discussed in Section 2.4).

Depending on the coordination model of choice, the level of flexibility and dynamism

in executing an agent plan may vary from rather inflexible organizational structuring

[15] (i.e., a coordination plan is defined a priori and superimposed by a master

coordinator over the agent community) on one extreme, to fully dynamic or run-time

negotiation [16], (i.e., the plan is continuously evaluated and decided among the

37

agents throughout execution, according to some self-organizing scheme of the

community [13]) at the other extreme.

In run-time negotiation, the coordination scheme is often expressed as a form of

declarative knowledge, and the resulting plan towards the goal is said to emerge from

that know-how, as well as the operating conditions and the input of the agent

community. Those plans are very open-ended: two different runs of the same agent

community, aiming at solving the same computational problem, are likely to differ

even considerably under a full negotiation model. The level of sophistication of the

knowledge codification and of the mechanisms employed to make good use of that

knowledge greatly varies - of course - with the complexity of the problem at hand: at

times it can be captured with some deterministic script loaded in each agent; other

times, however, it may be necessary to provide agents with significant semantic and

reasoning capabilities, and a lot of autonomy in determining their own course of

action.

In the organizational structuring scheme, instead, a rather prescriptive form of plan is

assumed, which – instead of emerging bottom-up - is explicated a priori in a top-

down fashion and assigned to the responsibility of a master coordinator. The plan is

then carried out in a centralized fashion by that coordinator, which orchestrates the

operation of a number of peripheral agents. Notice how centralization here is not so

much physical or topological, but rather logical and organizational: it is the function

of control that the coordinator provides in an organizational structuring scheme that is

logically centralized, which means very limited autonomy is left to other the

participating agents.

38

Many agent coordination systems, in practice, employ approaches that lie in between

the two extremes described above, and try to variously reconcile bottom-up autonomy

and top-down guidance: one possibility is to make organizational structuring

hierarchical, through the explicit delegation of portions of the plan to different

manager agents (see for example [174]); another variant is to have a high-level

centralized plan, which enforces top-down guidance to a certain level of detail, but

leaves to the autonomy of agents the resolution of the finer-grained parts of the plan,

which emerge from a network of agent-to-agent interactions.

Another paradigm that can be fruitfully employed to implement coordination models

is that of rule-based programming. Rule-based approaches have been extensively

used in Artificial Intelligence expert systems, with prominent examples such as OPS5

[105] and CLIPS [106], principally to provide automated reasoning and decision

support. From there, they have extended their reach to the implementation of flexible

decision systems, widely used in application domains such as Telecommunications

Management Networks [147], data management [144], and others.

Among rule programming paradigms, one of the most widely used is the Event-

Action paradigm. According to it, rules are composed of a left-hand side (the Event),

which is a declarative description of a pattern that defines some situation of interest,

and a right-hand side (the Action), which is an imperative program to be performed

when that situation occurs. In its basic form, the Event-Action paradigm is

particularly suited to specify reactive behaviors in a system, and it is practically

stateless. However, numerous variations that introduce and exploit a notion of state in

the rule-based system exist, through the definition of so-called Event-Condition-

39

Action (ECA) rules [145]. Conditions are predicates over the state of the system – as

well as the content of the received event: the state must be somehow available and

known to components that receive events and must execute actions: only if the

condition attached to a matching rule is verified, the corresponding action gets fired.

A further enhancement is to add Alternative Actions, moving from the ECA to the

ECAA rules paradigm [194], which allows defining actions that are fired in case the

condition of a matching rule is NOT satisfied.

Rule-based programming with paradigms such as ECA can be used to express

coordination: a rule execution engine managing a set of rules (a rule base) can direct

the work of a score of computational subjects, for example distributed objects [107],

by enforcing the execution of actions by those subjects whenever certain situations

occur. While rules in their basic form are eminently reactive, they can also provide

forms of proactive coordination, when the actions in the right-hand sides of rules

bring side effects also on the internal state of the rule system, and when they are

enriched with mechanisms for backward- and forward-chaining, such as pre-and post

conditions, also known sometimes as guards.

In rule-based systems, the overall logic is very fragmented and is defined bottom up.

The overall pattern of coordination remains thus largely implicit: it can be derived

only by evaluating how rules can be chained to one another, that is, how imperative

right-hand sides of some rules can bring side effects that match the declarative left-

hand side of other rules. As the rule base grows in size, that task becomes

increasingly difficult. Correspondingly, it may also become hard and counter-intuitive

40

to translate a top-down view of a complex coordination plan in terms of a set of rules

that implement that plan.

2.4 Employing processes for software coordination

Workflow technology aims at the support of complex collaborative processes,

composed of activities, in which the synchronization and coordination of the activities

and the actors having a part in them (i.e., the stakeholders of the process) is an

essential characteristic.

Traditionally, workflow technology provides paradigms, techniques and tools that

support, guide and automate the management of business practices. Among the

common domains of workflow applications, there are: clerical work, administrative

procedures, commercial transactions (e.g., business-to-business transactions),

document management, product development (e.g., software development), etc. From

those examples, it can be seen how traditional workflow applications see a central

role for humans, whose work is guided by the process model, and facilitated and

automated via a set of computer tools that get integrated into the process: typical

goals are to increase productivity and ensure consistent levels of quality to human-

intensive practice that can benefit from automation as well as the organized use of

computerized tools.

Workflow technology is based on the concept of an explicit process model that

describes process to be followed, and on facilities (collectively termed the workflow

or process enactment engine) for supporting, guiding and automating the

collaborative work of stakeholders according to that model [134].

41

Activities, also referred to as tasks, or steps, among other denominations, are usually

at the basis of workflow modeling: activities allow for process construction,

reasoning, and composition. A model includes multiple activities, which are linked

together by a set of explicit dependencies, such as temporal and causal relationships,

constrained transitioning, synchronization, conditional execution, and more. Those

dependencies define how the process flows, in terms of data as well as control (i.e.,

coordination among activities): at any time during the enactment of a process, a

number of activities can be taking place concurrently, provided that their

dependencies as defined in the model are satisfied. Activities can be simply a

synchronization point for the data and control flow, but more often they represent

actual units of work, which need to be carried out for the process to proceed. The

execution of the work associated to an activity can be thought of as its side effect

outside the realm of the model and within the “real world”, that is, the environment in

which the process unfolds and upon which it predicates. Depending on the application

at hand, a side effect can for instance be a computation by an helper application, the

invocation of an external tool, the allocation and use of resources, the assignment of

duties to stakeholders, the initiation or conclusion of some transaction, the production

of a document, the filling of an order, and so on.

As implied by the examples above, carrying out the work of an activity can require

the acquisition, use and manipulation of a combination of artifacts that must be

indicated in the activity definition, such as input and output data, tools and resources.

The work of an activity is also typically associated to some actor, which may have a

specific role or responsibility in the process.

42

For instance, in a software development process, an activity can represent the

building of a new version of a software product. For such a task, the input artifacts

would be the source files and the output artifacts would be the binary files produced

by the build; the tools could be a compiler and a linker, the resources could be a make

script and the source code repository, and the actor in charge of the task would have

the role of a software developer.

In Figure 4, the representation of a single activity in the graphic IDEF0 formalism

[197] is shown for illustration. It includes the definition of input and output artifacts

manipulated by the activity, the resources the activity needs to engage to carry out the

corresponding unit of work, and control stimuli that can originate from other

activities or external entities.

Activity A

Input
Artifacts

Output
Artifacts

Resources

Controls

Figure 4: Representation of a generic process activity.

In Figure 5, an illustrative example of a workflow is also shown, with sequential and

parallel dependencies between activities that are established directly from the data

flow. For the sake of simplicity, control flow constructs are omitted in this example.

43

By modeling processes along the lines described above, workflow technology is able

to describe complex, collaborative work practices in the form of explicit, top-down

plans that break down the overall work into a multiplicity of finer-grained steps and a

network of inter-dependencies among steps.

Activity A Input Ia
Output Of

Activity C
Activity F

Resource

Activity B Rc Resource
Rf2

Resource
Rf1

Resource
Rb Activity D Activity E

Resource
Rd

Figure 5: Example of workflow specification.

The workflow paradigm has along the years reached a significant level of maturity.

For example, the Workflow Management Coalition (WfMC, see

http://www.wfmc.org/) was established in 1993 to establish interoperability among

then emerging workflow formalisms and software products; today it counts more than

300 member organizations, including most developers of commercial workflow

systems and major IT product developers in general. Along the years, the workflow

community has delivered a number of results, several of which relate to coordination

languages and models. For example, a number of workflow specification formalisms

have been conceived (some of the latest examples are BPEL4WS [95], XLANG [152]

and XPDL [198]): those languages effectively provide high-level coordination

44

models and allow to express, author and maintain those models. Those formalisms

may have both declarative and imperative connotations, and accommodate ways to

enact processes both reactively (that is, initiate a workflow on the basis of some

external stimulus) and proactively (that is, initiate a workflow on the basis of some

specific internal state configuration) . Workflow formalisms, one the one hand, make

possible and easy to carry out abstract analysis and reasoning, for discussion and

communication of the process among human stakeholders, and, on the other hand, are

sufficiently formal and precise (i.e., machine-executable), to provide guidance and

enforcement of the coordination model by enactment engines.

From a technological point of view, workflow enactment engines have been evolving

in the last decade from centralized to de-centralized architectures. Centralized

enactment engines follows some variant of the classic client/server paradigm, which

is in fact effective only for systems running on LANs and having a limited number of

relatively clustered users and computer hosts. Decentralized enactment engines,

instead, have more dispersed computing architectures (for example, hierarchical or

peer-to-peer combinations of task processors, which collectively form the enactment

engine), coupled with distributed information infrastructures as well as distributed

organizational and work structures, which commonly leverage the Internet as a

substrate, and its related standards and applications (such as the WWW) as a

paradigm. Some early examples of decentralized workflow engines are ProcessWall

[135], Oz [21] and Endeavors [27]. Current decentralized industrial products include

Biztalk Server [195] by Microsoft and WebSphere MQ Workflow [196] by IBM.

Decentralization greatly expands the usability of workflow technology, for example

45

to cooperative processes involving multiple organizations; it also opens the way to

innovative means for the definitions, assignment and execution of processes and

fragments thereof among task processors.

In the last few years, in part due to the maturity and the insights achieved in the field,

approaches and techniques that have been established for and have become typical of

workflow have begun to be applied for other purposes, besides the support and

guidance of human-intensive collaborative practices. In particular, a number of

problems regarding the orchestration of multi-party interactions of software

applications or components may be mapped to the execution of some kind of process.

In those problems, workflow takes effectively the role of a software coordination

paradigm – similar to the approaches seen in Section 2.3 - which leverages the

process model for the specification of coordination. Among workflow formalisms,

one that has pioneered the application of process semantics specifically as a

coordination paradigm, and has a focus on the coordination of software ensembles, is

Little-JIL [136].

Some of the distinguishing characteristics that can be offered by workflow as a

software coordination paradigm are the following:

• A process specification provides a top-down view of the coordination model.

• The coordination model adopted is very explicit.

• Being top-down and explicit, process specifications tend to provide coordination

in the form of prescriptive guidance (as opposed to open-ended negotiation).

The applicability of workflow concepts to software coordination goes beyond

dynamic software adaptation, which is the focus of this work; fields of application are

46

possible and are being explored. To highlight the general issues and provide

motivating support our choice of workflow-based coordination in the framework of

the KX project, we hereby discuss two other such applications: how workflow can be

employed for the automated composition of value-added software services from pre-

existing computing entities; and how it can represent a valid paradigm to coordinate

the work of a community of software agents towards a common computational goal,

according to the discussion about agents in Section 2.3. Those two domains3 are

disjoint from the domain of dynamic adaptation; however, they both present

characteristics that can also be recognized as issues relevant to the coordination of

dynamic software adaptation.

Orchestration of software composition

A first important class of problems that seeks to use workflow for software

coordination can be characterized as the orchestration of the composition of software

systems and services. In the context of software composition, the word

“orchestration” indicates the automation, in accord to some application-level logic, of

the interactions among multiple computing entities, with the aim to come up with a

composite computational entity that provides a new service. With respect to

orchestrated software composition, workflow can be employed for the definition and

enactment of the dynamics regulating the automated wiring of the different software

components or applications that must work together towards the composite service.

The modalities of such an orchestrated composition may greatly vary, for instance

with respect to the degree of dynamism allowed (e.g., pre-defined vs. on-the-fly

3 Notice that the choice of those two particular problems in this discussion does not imply that other
automated software coordination problems are not suitable to be addressed with workflow techniques.

47

composition), the level of granularity of the participating software entities (e.g., fine-

grained components vs. full-fledged, self-contained applications), the intended

lifespan of the newly composed service (e.g., opportunistic composition of a one-shot

new service vs. persistent composition of a permanent new service). The kind and the

complexity of the coordination that must be exerted varies accordingly.

A major contribution to the trend towards automated software composition originates

from the increasing degree of pervasiveness reached by software assets within the

enterprise, and by the need to integrate those assets together coherently. That is at the

basis of Enterprise Application Integration (EAI) [199]. EAI, as a discipline, has two

major, complementary concerns: a technological concern, which addresses the

integration of all the information systems and productivity applications in a company

onto a common integration substrate; and a business support concern, which

addresses the automation of the interactions among the interoperating applications in

accord with some logic that reflects the nature and the business model of the

enterprise.

Technically, EAI seeks a form of large-scale software composition, in which the

software to be composed tends to be rather heterogeneous, self-contained and coarse-

grained, and the composition logic is largely derived from the business processes of

the enterprise. EAI is often promoted and facilitated by the exposition of a wealth of

enterprise functions and the corresponding information systems on a common and

uniform computing and communications environment, such as that offered nowadays

by corporate Intranets. Upon that basis, EAI platforms are typically founded on some

form of middleware that pervades the company and supports long-duration and

48

complex transactions among participating applications. Furthermore, to capture and

automate business processes, leading EAI platforms, such as BEA WebLogic

Integration [148], or TIBCO BusinessWorks [149], often include a workflow notation

and a corresponding enactment engine

Notice how we are talking here primarily about application-to-application workflow,

as opposed to the traditional workflow focus of supporting and automating human-

centered activities with tools (sometimes defined as human-to-application workflow).

Application-to-application workflow glues enterprise software together by specifying

some scripted control and data flow among them, including application bindings,

composition constraints, data transformations, etc. The sophistication of the

coordination facilities needed for carrying out the kind of automated composition

sought in the EAI application domain is relative, since a lot is pre-defined and rather

stable, at least for application integration within a single enterprise: for instance, the

applications to be composed are well-known, hence there is no need for on-the-fly

component lookup and recruitment, nor to dynamically overcome any unforeseen

impedance mismatch between components. The major difficulty lies instead in

modeling a potentially complex business process correctly in all its facets, and

possibly in reconciling within that process any known idiosyncrasies of the

participating applications (such as any process-in-the tool syndrome [37]).

EAI initiatives, these days, also strive to surpass the boundaries of a single enterprise

and its Information Technology infrastructure, in order to interconnect multiple

enterprises that interact with and service each other, for instance in commercial

supply chains. Application-to-application workflow thus extends onto larger-scale

49

company-to-company workflows, often by means of federation [150], that is, the

composition of the separate and self-standing workflows of multiple organizations,

some parts of which are made accessible as entry or composition points from outside

each enterprise.

Of course, beyond the boundaries of a single organization, the technical concerns

about the integration of enterprise applications are greatly intensified, since a high

level of interoperability between the IT infrastructures of the enterprises involved is

necessary. That may still represent a considerable technical hurdle, in particular when

trying to compose together largely diverse information systems and tool sets, hardly

compatible middleware platforms and computing environments, etc.

Once those “hard” (i.e., technology-based) interoperability issues can be reconciled,

EAI – irrespective of scale – can be seen mostly as a “soft” (i.e., logical)

interoperability question, which can be posed in terms of correctly expressing and

carrying out the interactions among the various enterprise applications that need to

work together for the task at hand. That is a coordination problem.

Nowadays, the necessary level of interoperability can be achieved by exploiting -

besides basic Internet protocols and services - recent advancements regarding

standard and open means for the description, lookup and interaction of heterogeneous

components over the Internet (such as the family of protocols and programmatic

interfaces commonly known under the collective name of Web Services, initiated by

industrial partnerships and now embraced and promoted by the World Wide Web

Consortium - W3C [12]).

50

That trend has recently prompted a number of initiatives in WWW-based EAI that

assume the availability of Web Services as the technology of choice for the generic

interoperability substrate – within and across enterprises - and propose standard

languages and frameworks (de jure or de facto) for modeling and developing business

processes. Among the most noticeable initiatives there are BPEL4WS [95]

(sponsored among others by corporations like IBM, BEA and Microsoft, and

emerging from earlier efforts, such as WSFL [151] and XLANG [152]), and ebBPSS

[153] (promoted by the ebXML consortium).

Although the aforementioned initiatives aim specifically at defining formalisms and

techniques that enable to wire together enterprise applications according to business

processes, it is easy to observe how their relevance goes beyond the domain of EAI.

Since they employ a single, uniform way to indistinctively wrap and invoke as Web

Services components of any granularity, from simple function calls, to services, to

entire applications, to the entry points of other complex, federated business processes,

they address in fact the definition of coordination models for orchestrating generic

networked computational units, at least those that can be exposed as Web Services.

It remains to be seen how well BPEL or other solutions proposed in the specific EAI

arena can gracefully extend to such a more generic view. The solution for many of the

various issues related to orchestrated software composition is still of course very

much an open research field, for example in cases that are characterized by a need for

particularly flexible composition plans and for on-the-fly recruitment of service

components, either in impromptu, one-shot compositions, like in DISCUS [124], or in

services that are intended as more permanently available, like in DySCo [158]. Some

51

broad initiatives for the investigation of those open issues have been launched in the

Web Services community: one prominent example is the Web Services Choreography

Working Group of the W3C [94].

Outside the WWW-based world of Web Services, moreover, other initiatives exist,

which see workflow as the glue of complex distributed applications in other

computing contexts, such as for example GridFlow [50] for Grids. It remains to be

seen whether all of those efforts can be consolidated, extended and generalized.

However, for the purpose of this discussion, it is important to notice how workflow

formalisms and techniques applied to application-to-application integration have

gradually achieved a degree of maturity and recognition, which makes them a natural

technological choice for the orchestrated composition of software.

Orchestration of agent communities

In Section 2.3, agent-based systems were discussed as a specific context in Computer

Science in which the investigation of software coordination paradigms and languages

is particularly active and relevant. Workflow-based coordination has been applied

also in that context, to define and enact the plan employed by an agent community to

reach its computational goal.

Since workflow-based coordination naturally leans towards a form of prescriptive

guidance, the orchestration of agent communities with an organizational structuring

organization - which calls for a master coordinator – is particularly suitable to be

expressed as a workflow, and to be enforced at run time by a process enactment

engine.

52

Technically speaking, a de-centralized enactment engine composed of multiple task

processors can be employed: many in the first wave of decentralized process

enactment engines that have been extensively researched in the early 90’s (such as

Adele [20], Oz [21], or Serendipity-II [22]), their current commercial-strength

counterparts, such as BPWS4J [23], or TIBCO BPM [24], or undergoing academic

and open-source initiatives, such as Cougaar [25], or Juliette [26], are suitable

candidates, capable to maintain the logical centralization of coordination, while

allowing for a physically distributed implementation of the coordinating entity, which

scales together with the distribution of the agent community. One typical distribution

scheme is a hierarchical organization of task processors. Sub-processes can be

delegated to the various task processors, and all dependencies (such as causality or

precedence) between sub-processes are to be resolved by a master task processor,

taking care of the higher level of the process specification hierarchy. Each task

processor thus takes the role of a delegated master coordinator and oversees a subset

of the agents, which are regarded by the workflow as pools of resources of

computational nature.

Another approach is to associate in the distribution architecture the task processors to

the software agents (that is the approach taken for example in Cougaar [25], which

integrates software agents and task processors, and to a large extent in Juliette [26],

which tends to co-locate task processors with computational executors of work

associated to process steps).

Workflow technology is also suitable for a number of agent coordination schemes

that fall in between the two extremes of strict organizational structuring and full run-

53

time plan negotiation. When a plan for reaching the goal is expressed as an explicit

multi-participant process, such process can indicate in a proactive way what work

stages must be executed at a given moment, and at the same time handle in a reactive

way events and situations (including unexpected ones) that occur in the course of the

cooperative work. The distinction between proactive and reactive behavior in a

workflow that coordinates software agents is particularly important, since it closely

mirrors the other distinction, between guidance and autonomy. In the distinction of

responsibilities between the workflow engine and the software agents, proactivity

maps to guidance: for example, the workflow engine assigns a certain task to a given

software agent, which is put in charge of its execution. Reactivity instead maps to

autonomy: for example, a software agent can carry out a certain portion of the plan as

a reaction to some event, thus exerting some discretional power.

In a case in which autonomy and discretional capabilities on the part of the agents can

be exploited, substantial amounts of complexity in the workflow can be deferred from

the design time to the enactment time. In that case, the workflow specification does

not need to be excruciatingly prescriptive, and may describe the coordination patterns

among agents only at a relatively high level of abstraction. Consequentially, many of

the more dynamic aspects of the plan may become variable, in accordance with the

degree of discretional autonomy enjoyed by the various agents in the community.

In general, how to reach the most effective trade-off between autonomy and guidance

depends on the characteristics of the cooperation capabilities built in the agent

framework, as well as on the workflow paradigm and its implementation within the

workflow enactment engine of choice. That trade-off constitutes one of the major

54

design decisions to be solved in order to adequately exploit workflow techniques to

coordinate a group of distributed agents.

From the discussion above, it should appear evident how workflow formalisms and

techniques are complementary to a significant degree and sometimes even

overlapping with software agents, in particular as far as coordination is concerned

(see also [28]). By hybridizing the two domains, it becomes possible, on the one

hand, to employ software agents to represent certain workflow actors, which can

contribute to enhance the functionality of decentralized workflow enactment engines,

as shown in [22] and [27]. On the other hand, it becomes feasible to co-opt within a

workflow paradigm a substantial part of the mechanisms and information that are

used for cooperation in an agent community, so that the workflow can be employed to

orchestrate that cooperation. That task – as we discussed – is conceptually quite

simple when the agent coordination model of choice is close to the organizational

structuring extreme of the spectrum, and becomes instead increasingly more complex,

as the coordination model drifts towards the other extreme of full run-time

negotiation.

2.5 Characteristics of coordination for dynamic adaptation

Having discussed in Section 2.3 some of the leading software coordination

paradigms, and in Section 2.4 how workflow technology can be regarded as a means

for software coordination, it is possible now to assess its fit with respect to the

orchestration of dynamic software adaptation and the requirements imposed on its

coordination role.

55

Automatically adapting a generic distributed application requires the ability to select

and apply a plan that brings about some intended changes to the run-time state of that

application. That occurs typically as a reaction to some significant piece of

information which serves as a trigger for the adaptation. That trigger is typically

relayed by the diagnostic role, although adaptation could be also triggered willingly

by some stakeholder of either the target system or the dynamic adaptation platform.

Regarding the selection of a certain policy, in the simplest cases the trigger may

assert a fact that already carries with it unequivocally defined consequences; other

times, a variety of tools - which may or may not need to take in account the current

state of the target system – could be exploited for the support of the best decision

among multiple alternatives. For instance, for a typical dynamic adaptation task such

as the on-the-fly modification of the architectural layout of the target system, formal

architectural modeling and constraint analysis, coupled with transformation tools,

such as [53] [54], can be effectively exploited. A discussion on how to incorporate

generic decision tools in the control loop of externalized dynamic adaptation can be

found in Section 3.2, where the architecture and design of Workflakes are described.

When a decision to apply a certain adaptation is taken, a single action will sometimes

suffice to fulfill it. That is the simplest example of adaptation, and it is the assumption

of a number of systems, such as Falcon [55], which is devoted to the interactive or

automated steering of a computer program. When the target is a multi-component

application, however, the decision will often have to be mapped onto a multiplicity of

fine-grained interventions, impacting various separate elements of the target. In that

case, the adaptation needs to be represented as a set of concerted and inter-dependent

56

activities, and some mechanism is needed to take up the coordination role, thus

ensuring that their side effects on the target system (i.e., the actuation of the

adaptation) occur in a coherent and consistent way. Those activities may have well-

defined causal relationships, and they may be conditional, or dependent on others;

besides, during the course of the actuation, certain activities may fail, calling for some

form of contingency planning; etc.

In general, the more complex the adaptation and the more sophisticated the actuation

it calls for on the target, the more involved and well-concerted the corresponding plan

needs to be; that, in turn, obviously imposes a set of requirements on the coordination

facility. Those requirements regard a number of aspects:

• the power of the coordination constructs made available to specify the adaptation

plan;

• their level of abstraction, i.e., independence from the peculiarities of the

application domain and the execution environment;

• the explicitness of the coordination specifications, which must be easy to reason

about, maintain, evolve and reuse;

• to enable automation, those specifications must be executable within a

computerized environment, thus they have a significant level of formality and

semantic precision;

• the execution of the specifications must highly repeatable, yielding results that

can be verifiably consistent over time, since automation naturally calls for the

ability to carry out validation and auditing, either at run time or “post mortem”.

57

Workflow technology is one viable choice as the coordination paradigm for dynamic

adaptation since it significantly complies with the above mentioned requirements:

• The concept of a process model provides an explicit and abstract way to express

sophisticated patterns of coordination. To date, no universal consensus exists on

the set of constructs a process modeling facility should encompass. However, sets

of process definition constructs (or patterns [154]), powerful enough to produce

highly detailed specifications of complex coordination logic are supported to a

sufficient extent by the state of the art of process modeling (for example, see an

analysis of BPEL4WS [155]). That makes feasible and many times even simple to

define multi-party, multi-step dynamic adaptation plans as processes.

• High-level process description languages or formalisms exist, which represent

valid vehicles to specify, document and reason about dynamic adaptation

processes. In particular, the top-down nature of most process specifications is apt

to capture human knowledge about what needs to be done to adapt a system, in

terms of the sequence of steps that must be followed.

• Process specifications are easily reusable and maintainable, which enables the

evolution of the dynamic adaptation process, together with the changing needs of

a dynamic adaptation application, as well as the controlled target system.

• Most process representations are sufficiently formal to be executable within an

apt process enactment engine that automates the execution of coordination.

• Process enactment software provides out of the box the means for the repeatable

enforcement of the adaptation process.

58

Furthermore, there are some technical features offered as a commodity by state-

of-the-art process technology, which are convenient in the context of a dynamic

adaptation platform:

• State-of-the-art decentralized process engines ensure the scalability of the

approach, and enable to efficiently pursue the dynamic adaptation of widely

distributed software applications.

• Software integration mechanisms are typically offered by process enactment

engines, in order to facilitate the interaction of processes with a variety of

software tools and resources that can be used to carry out the various activities

mandated by the process. Those facilities can be exploited for dynamic adaptation

to integrate one or more effector technologies.

Other approaches have the potential to fulfill the coordination role in dynamic

software adaptation. It is interesting to compare the level of requirements compliance

and support offered by process / workflow technology, with that of those other

approaches. In particular alternatives that seem to be popular in the domain of

dynamic adaptation are based on rule or agent systems. Some discussion on the

principled similarities and differences between process technology and those two

approaches is reported below; the analysis of related work in Section 6.4 will expand

on these issues, by comparing and contrasting concrete examples of works that use

those approaches.

Generally speaking, a considerable amount of overlapping and also significant hints

of convergence can be observed among rule-based, agent-based and process-based

59

technologies. In the context of that convergence, Figure 6 tries to depict the major

factors of commonality among those software coordination approaches.

Process technology

Rule-based technology Agent-based technology

Open-en
ded proces

s sp
eci

fica
tions

Rule c
oncat

enatio
n

Decentralized rule engines

Dynamic negotiation

Organizational structuring

Decentralized task processors

Figure 6: Inter-relationships between rule-, agent- and process-based coordination approaches.

For example, rule-based programming is at the heart of several agent coordination

efforts (see for example [109] [111] [112]), in particular when a high degree of

autonomy is desired and the coordination model of the agent community leans

towards dynamic run time negotiation. The basic idea is that a (portion of a) rule base

can be attached to each agent. The autonomous work of the various agents in the

community may have – either as a voluntary act or as an implied consequence - side

effects that are described in the left-hand side of the rules attached to other agents. It

is sufficient to establish within the agent community a communication substrate that

propagates the notification of those side effects to come up with decentralized

coordination means that can be opportunely programmed depending on the logic of

the agent application at hand.

60

Rule-based programming has also been employed to implement centralized as well as

decentralized process enactment engines, such as Marvel [108], Merlin [200] and Oz

[21]. A rule-based process specification takes the concept of process fragmentation to

the extreme: each process fragment is constituted by one single rule: larger process

fragments, as well as the overall process, can only emerge bottom-up, via the

concatenation of appropriately coded sets of rules.

That approach ensures maximum flexibility and dynamism in constructing open-

ended processes; on the other hand, since rule chains are declarative constructs

dispersed throughout the rule base, it suffers eminently – as most forms of

coordination by means of rules - from implicitness. For that reason, it may be quite

hard to turn a coordination plan that can be conceptualized as a step-by-step

procedure into a corresponding rule base, in particular when the plan is complex, and

the rule base needs to scale up and/or evolve over time. Also maintenance and

understanding may become difficult, whenever a rule must be added to a pre-existing

process specification, and happens to impact it in some way: for instance, a trigger

that is matched multiple times, or process fragments that have overlapping side

effects, or interact with each other. However, even if pure rule-based process

specifications are perhaps not mainstream in process technology to date, the

overlapping between the two techniques and their problem and solution spaces

remains evident, and one would be hard pressed to find a single process or workflow

engine that does not owe somewhat to rule-based programming. The basic idea of

rules remains especially evident in the concept of trigger conditions, which are

61

included in process specifications to enable the reactive initiation of process

enactment.

One important advantage that processes traditionally defined as task flows have on

rule-based systems is that they tend to express coordination in a more abstract and

explicit way. Because of the implicitness of rule-based approaches, coordination logic

expressed that way is usually harder to specify and maintain with respect to a process

model. For the same reason, process formalisms are often better-suited for reasoning

about and communicating the coordination model. Similarly, also carrying out

auditing is normally easier when process-based, as opposed to rule-based,

coordination is employed.

With respect to agent-based systems, Section 2.4 discusses how today’s decentralized

workflow engines can resolve the issue of distributing task processing

responsibilities, and how process facilities are suitable and actively being used for

agent coordination (see for example [25] [26]), supporting not only strict

organizational structuring, but also various degrees of agent autonomy. Notice also

that, whereas the full dynamic negotiation capabilities enjoyed by some agent-based

systems are hard to achieve by means of process-based coordination, those systems

are likely to suffer form an implicitness similar to the one previously discussed for

rule-based systems; furthermore, that kind of autonomy may bring about a lack of

repeatability, which may hinder auditing and validation.

Based on the considerations above, it can be argued with sufficient confidence that

process technology has a number of characteristics that make it a prominent option

for the resolution of software coordination challenges inherent in dynamic adaptation.

62

In Section 3.1, a discussion of how Workflakes tries to take the best advantage of

those characteristics can be found.

63

3 Description of the solution

Workflakes is a process-based facility for externalized dynamic adaptation. Its design

has been driven by a certain number early decisions on how a dynamic adaptation

process and the corresponding enactment engine should be structured. Together, those

decisions make up a model for the representation and the enactment of processes

orchestrating the dynamic adaptation of software systems, with particular attention to

systems of (legacy) systems, which has been followed and applied in this research.

This Section begins by presenting that model, continues with a with a description of

the architecture of the Workflakes engine, then discusses its applicability to a

spectrum of problems and target systems, and concludes with a critical assessment of

the model.

3.1 Model

Various possible alternatives are available when designing a process enactment

facility applied to some domain, for example with respect to the kind of process

representation to be used, or the distribution architecture of the engine, or the

mechanisms for the integration of external tools, and many others.

The discussion that follows aims at describing the decisions taken for the Workflakes

process-based orchestration facility. That model emerged by considering, first of all,

the coordination role fulfilled by Workflakes within the conceptual architecture

described in Section 2.2, as well as its inter-relationships with the other dynamic

adaptation roles: in particular, the diagnostic and actuation roles are the ones with the

most influence on the orchestration facility. That influence translates into a number of

64

specificities, in both process specification and process enactment, related to the type

and the structure of processes employed to orchestrate the dynamic adaptation of

software.

The coordination role is responsible to bridge the more analytical part of the dynamic

adaptation control loop, i.e., the monitoring, diagnostic and decision facilities, with its

actuation part, in charge to carry out the interventions required for the adaptation. It

achieves that goal by expressing control, and providing means to organize and exert it

on multiple effectors. Process-based coordination expresses control via the definition

of specifications in some process definition formalism, and exerts it via an enactment

engine that executes those specifications.

As anticipated in Section 2.5, a dynamic adaptation process follows typically a

reactive behavior, following some output from the diagnostic role. The enactment of

the process descends from the recognition by the diagnostic role of some significant

condition that is occurring in the target system. The relationship between the

diagnostic output and the process enactment, although mediated by the decision role,

is quite clear: a recognized target condition is an event that may map to a trigger and

an entry point somewhere in the dynamic adaptation process. The mapping, that is,

where the entry point is and what portion of that process (i.e., what process fragment)

is fired and enacted to orchestrate some interventions on the target system following a

given trigger, is a choice under the responsibility of the decision role.

The orchestration of some dynamic adaptation is therefore enacted in a reactive

fashion in response to the trigger, and starting from a single root task, that is, the

entry point associated to that trigger by some automated decision. The root task is

65

then incrementally expanded into a whole set of steps according to the process

specifications: that expansion takes the form of a recursive hierarchy of sub-tasks (a

task decomposition hierarchy), whose unfolding is in charge in the end of completely

handling the target system condition codified within the trigger event.

The original trigger must carry enough input information to allow to initiate the

enactment of the process fragment; therefore, both the control and the data flow of the

dynamic adaptation process originate from the trigger event, although further

information that must be employed during the course of the process may either

already be known to the process, or may be produced or acquired as the process

fragment unfolds, as a byproduct of the enactment of tasks and the execution of the

corresponding work units.

From the discussion about triggering, it follows that a dynamic adaptation process can

be represented in purely reactive and compositional terms: it is composed of all the

process fragments that respond to and handle some pre-defined triggers, which in turn

map back to significant target system conditions. The level of process fragmentation,

i.e., the size of the fragments, directly influences the level of open-endedness of the

process. Modeling a dynamic adaptation process in that form provides a simple

mechanism to close the adaptation loop – specifically the delicate passages between

diagnostics and actuation - in a fully automated way.

Such a reactive and compositional approach to the specification of the overall process

allows to reach a trade-off, according to which the single process fragments are

defined in a top-down, explicit fashion, while the overall process is composed in a

bottom-up fashion, from the contributions of the various fragments. The dynamic

66

adaptation process contains a set of declarative descriptions of what conditions are of

interest in the target system, each coupled with the specifications of some process

sub-structure, which defines a reaction to that condition. All reactions have a clear

imperative connotation, since they direct the execution of the adaptation and describe

how to produce the intended side effects upon the target system via actuation.

In principle, a fully automated and completely reactive process model excludes the

possibility of selecting and initiating an adaptation in an interactive way on the part of

some agent that is located outside the closed control loop of dynamic adaptation. That

limitation, however, can be easily overcome, by encompassing in the model of a

dynamic adaptation process facility a provision for an external conduit for injecting

trigger events into the control loop, either at the monitoring level, or the diagnostic

level, or both.

Such a provision is useful for several purposes. When it is used by some human

operator, for instance, it enables a degree of run-time controllability. The full

automation of the coordination of dynamic adaptation brings about a great potential

for substantial savings of management resources, prompter response times, and more

reliable and consistent interventions. But it also has a downside, with respect to the

controllability of the adaptation. For instance, the stakeholders of the process and/or

the target system might decide to divert the course of the process and guide a certain

adaptation towards a different outcome, or to interrupt it altogether. Providing some

means for human stakeholders to interact with the process has the important

consequence that, while humans may still be completely absent from a dynamic

adaptation process, they can also be present, at least for a matter of opportunity, if not

67

of necessity: they may cover simple and punctual decisional or authorization roles

provided for by the process, e.g., to confirm or retract potentially critical or drastic

adaptations.

Other entities that can take advantage of a means to issue trigger events can be

software systems that are not properly part of the target system or the dynamic

adaptation platform, but which might want to proactively initiate some form of

adaptation in certain specific cases. Those external systems may be related to other

phases of the life cycle of target system, besides on-the-field-operation: a

development tool, for example, like a configuration manager, might want to trigger an

adaptation process that upgrades the target system, following the release of a new

software version (as in Software Dock [36]).

Additional trigger events can be also issued and injected in the same way into the

closed control loop of dynamic adaptation as a consequence of side effects included

in the process enactment: that can happen either directly (i.e., the side effect by some

effector purposely equates to issuing a new trigger), or indirectly (i.e., the effector

causes some modifications in the target systems, which are captured by the

monitoring role and interpreted as significant new conditions by the diagnostic role,

causing the production of a new trigger event). That way, “derivative” proactive

behavior can be made part of a process that has primarily a reactive stance.

The interplay between the diagnostic, decision and coordination role, together with

the eminently reactive nature of the dynamic adaptation process, resembles the Event-

Condition-Action paradigm (see Section 2.3). In fact, the decision role mediates – by

properly evaluating conditions predicating over the state of the target system -

68

between the diagnostic events and the enactment of adaptation provided by the

coordination role.

That parallel is valid to some degree. In particular, the significance of the decision

role is best appreciated by considering how, for the dynamic adaptation of complex

target systems, a simple Event-Action metaphor would be too simplistic and

mechanic: it would equate to have completely determined and fixed decisions for

each possible occurrence of some diagnostic event, irrespectively of any variability in

the operational context of the target system. That is unlikely to be realistic and

adequate in field conditions: decision points need many times to incorporate complex

and subtle considerations about the current state of the system and its surrounding

environment That constitutes one of the major motivations to include an explicit role

for automated decision facilities in the dynamic adaptation of software systems.

The parallel between Conditions in ECA rule systems construct and the decision role

in dynamic adaptation is furthered by the observation that the complexity of the

Condition predicate, as well as the means used to evaluate it, is not constrained in any

way in the ECA paradigm: any kind of logic can be accommodated. Such a model

remains conceptually agnostic with respect to the decision-making approach and

therefore enables to leverage as needed any system that can provide adequate support

for the automated decision-making. The decision role in dynamic adaptation is,

conceptually, similarly generic and unconstrained.

A difference between the model proposed and ECA rules exists, and is very

important. A single process trigger does not simply fire an individual rule, but causes

the initiation of a whole sub-process of arbitrary size, duration and complexity, which

69

may be completely pre-defined in a top-down fashion. In rule-based systems that

follow the ECA paradigm, instead, right-hand side actions are atomic and typically

short-termed Therefore, to obtain the same effect in a rule-based engine, mechanisms

that compute and execute continuation from the rule originally fired are needed, in

order to construct chains of rules bottom-up.

While the inter-relationship between the diagnostic and the coordination role defines

the modality for initiating the orchestration process, that between the coordination

and the actuation role regards the operational semantics to be given to enacted

process steps. Let us consider a task decomposition hierarchy as it unfolds from its

root: it is made by some inner nodes, i.e., tasks that are further decomposed, and by

some leaf tasks. Leaf tasks represent atomic units of coordination that cannot be

further decomposed; they do not carry in themselves any additional coordination

semantics, so they can naturally represent the units of work that are meant to carry

side effects onto the target system. As such, they can be the loci for the operational

semantics of dynamic adaptation: for example, the definition of leaf tasks can be used

to assign certain effectors to them, their input can be used as the input to the

effectors’ computations, and any assigned resources as resources to be used by the

effectors for their work. Similarly, the results of the effectors’ execution can be

coupled with the state and the outcome of the corresponding leaf task, and as such,

they can be relayed back up the task hierarchy. Leaf tasks can effectively connect the

process enactment environment to the “real world”, i.e., the computing environment

where the target system runs and is being adapted.

70

For that connection to be effective, there needs to be a tight conceptual as well as

operational integration between the enactment of leaf tasks and the effectors they use.

The model adopted in this work considers effectors as necessary resources that are

explicitly indicated in the definition of leaf tasks; since leaf tasks cannot be enacted

and do their work without acquiring and using those resources, effectors become first-

class entities in the process specifications. Furthermore, the architecture of the

dynamic adaptation process engine includes an actuation API that allows leaf tasks –

as they are enacted - to interact with effectors (independently of how the latter are

implemented) by means of a few generic primitives. That API will be further

discussed in Section 3.2.

Therefore, in the adopted model the inner task nodes in the process decomposition

hierarchy and their dependencies express the logic according to which leaf tasks are

planned and enacted in a concerted way. Leaf task, in turn, oversee the practical units

of adaptation work by invoking and controlling their associated effectors through the

actuation API.

Another point of interest in processes for dynamic software adaptation is the

significance of constructs and techniques for handling exceptional courses of action.

In any process it is important to account for exceptions and errors that may occur

during the enactment of the process, and to be able to express how the control flow

must change as a consequence. That becomes paramount in processes that are fully

automated, and whose work aims at forcing modifications onto a complex running

piece of software. At any point in the process, the actuation by an effector can fail, or

71

produce wrong results, or even have undesired effects on the target component;

therefore, clear and efficient support for those situations is especially necessary.

Several process languages these days include that kind of support, in the form of

exception handling [201], such as for example, Little-JIL [19] and BPEL4WS [95].

Exception handling enables to specify certain branches in the workflow that are

executed whenever specific conditions (the exceptions) occur in the internal state

maintained by the engine during some phase of process enactment: in a process

decomposition hierarchy, exceptions force a jump out of the current sub-process and

resume the process enactment on an alternative part of the hierarchy, which behaves

as an exception handler. At the end of the unfolding of the exception handler, existing

systems adopt various options with respect to the enactment of the original sub-

process: for example, it can be considered finished, it can resume, it can be re-started,

etc, depending on the semantics of the exception mechanism.

It is important to consider what an exception handler sub-process should entail in the

case of dynamic adaptation. In many applications of workflow technology side effects

tend to be confined to the manipulation of data (internally to the process state store, or

in a database, or in a document repository of some sort, etc.). In those cases,

traditional transactional mechanisms with commit/rollback capabilities for that data

may offer sufficient remedies in the face of some exceptional situation.

In dynamic adaptation, however, when an adaptation of the target system requires

multiple interventions to be completed, possibly on a variety of elements, the raising

of an exception may occur in the middle of those interventions. That is a situation

akin to an error occurring in the middle of some transaction; however, the basic

72

rollback of an atomic transaction is most of the times insufficient, since some of the

side effects that may have been caused by a dynamic adaptation process fragment in

the “real world” of the target computing environment (such as the shutdown of a

target component) could not be simply rolled back anymore. Instead, the exception

handler must be designed to compensate the earlier invalid adaptation, and to bring

the target system and the process into a state that is consistent and enables further

operation of both. Compensation may have the goal to either undo a previous side

effect, or to bring forth the system to a new consistent state that is different from

before, but stable and acceptable.

Designing compensation sub-processes may be particularly involved in the case of

dynamic adaptation. Firstly, the set of possible errors that can arise from the

interaction between effectors and target system components can be quite large. Also,

some compensations may need to carry out a major re-hauling of the target system at

large, even in the face of a local induced fault on a single component, if that

component is somehow critical. Finally, when some adaptation requires multiple

steps to be completed to bring the target system into some desired state, and some

step fails in such a way that the multi-step adaptation cannot go further, the exception

handling mechanism may need to be able to compensate also previous steps, even if

they were completed successfully.

Exception handlers included in the specification of a process – by their nature –

typically are meant to deal with internal contingencies. Internal contingencies are

those whose possibility to occur in the target system as it is adapted according to plan

is known, and which should be explicitly provided for in the design of the adaptation

73

process. A dynamic adaptation system is also particularly exposed to external

contingencies. Those can arise because of the level of uncertainty inherent to software

execution within a distributed computing environment: glitches, faults or other

problems can always occur on any of the software entities involved while the process

is in execution. External contingencies may correspond either to unforeseeable target

system states, or to faults within any part of the dynamic adaptation loop itself, e.g., a

communication failure between effectors and the target system components to be

adapted. They can occur either as an unforeseen consequence of the adaptation

process, or because of some independent circumstances. To ensure robustness against

external - in addition to internal - contingencies, the dynamic adaptation process

should provide some generic exception handling branches, representing default

courses of action to be taken when “all else fails” and the adaptation process needs to

reset to some sort of a “safe state”.

All the issues discussed so far as characteristics of dynamic adaptation processes can

be succinctly summarized as follows:

• the process is fully automated and reactive, composed of multiple process

fragments;

• a fragment is a pre-defined sub-process, fired by a corresponding trigger;

• a process fragment unfolds from a root task as a task decomposition hierarchy;

• a means to interact with the process from the outside of the control loop is

provided in the form of a conduit for issuing process triggers;

• inner nodes in the task hierarchy are coordination constructs; leaf nodes represent

actual units of work;

74

• interactions with effectors occur during the course of leaf tasks;

• process includes exception handling for internal as well as external contingencies;

• exception handler sub-processes must encompass forms of compensation.

These characteristics have guided the architectural design of the Workflakes engine,

which is discussed below.

3.2 Architecture

To introduce the architecture of the Workflakes process-based coordination facility it

may be useful to first briefly contextualize it within the “bigger picture” of the KX

platform as a whole (for an exhaustive presentation of the overall KX structure and

implementation, refer to [122]).

KX covers the entire reference architecture shown in end-to-end. To

implement its various layers, KX uses sensors, gauges, controllers and effectors

components, which are physically distributed.

Figure 3

In KX, sensors, gauges and controllers communicate solely via publish/subscribe

event notification, using content-based asynchronous messaging middleware. Notice

that the Sensor and Gauge buses of the conceptual architecture are unified in KX into

a single event notification facility: initially, we chose Siena (Scalable Internet Event

Notification Architecture) [156], but later added support for alternatives (e.g., Elvin

[157]).

75

Figure 7 shows how KX building blocks are linked to each other via the event

notification middleware, at a high level of abstraction, and disregarding distribution

aspects4. Besides Workflakes, the other major elements are:

• The Event Packager, which acts as an event translation service that pre-processes

incoming sensor data, since the various sensor technologies do not necessarily

output a unified event format that can be consumed by our gauges. The Event

Packager also timestamps sensor events according to a globally synchronized

clock, and acts as a “flight recorder” to persistently log in a database the incoming

events from the sensors, for later replay or data mining.

• The Event Distiller, which is the main gauge component. It performs

sophisticated, possibly cross-stream temporal event pattern analysis and

correlation across continuous data streams from multiple sensors, to capture and

diagnose target system conditions of interest for the dynamic adaptation

application at hand. The Event Distiller is dynamically configured with

correlation rules defining the event patterns of interest: new rules can be added

and previous rules can be replaced or removed on the fly.

The Figure also shows an interaction between Workflakes and effectors that occurs

outside the bus: for the rather tightly coupled interactions between controllers and the

effectors they coordinate, KX advocates point-to-point communication for those

interactions, in the form best suited with respect to the technological underpinnings of

the effectors employed.

4 When KX is instantiated on the field, multiple Event Packagers, Event Distillers and Workflakes task
processors can be deployed and configured as needed.

76

EffectorsSensors

Component Component Component

Legacy system

Event bus

Event packager Event distiller Workflakes
(monitoring) (diagnostics) (control)

DB

Figure 7: KX architecture.

By leveraging event notification middleware, KX components can be easily

rearranged, with multiple instances of KX Event Processors, Event Distillers and

Workflakes controllers introduced as needed to address scalability requirements.

Furthermore, the actual components that implement sensors, gauges and controllers

remain well separated, providing KX with enhanced flexibility: depending on the

problem domain, a different set of components may be integrated, and some may be

replaced with different, problem-specific alternatives. For example, KX does not

formally embrace and include any particular technology for monitoring, since sensors

are necessarily highly target-system specific, and thus can vary widely. Among the

technologies that have been integrated in KX trials and applications by bridging them

to the event-based Sensor Bus there are AIDE [63], library wrappers [65], JMX-based

77

monitors [129], as well as home-brewed, target-specific sensors directly attached to

the event middleware.

The strategy of keeping strongly detached the components that fulfill the various

dynamic adaptation roles, and consequently also their respective concerns, applies of

course also to controllers, and hence – within KX – to Workflakes. Thanks to that

strategy, besides the conceptual inter-relationships already highlighted in Section 3.1,

which originate form the conceptual architecture, there are no hard dependencies

imposed upon the design of Workfalkes by any design or implementation decisions

peculiar to the KX reification of that reference architecture. In fact, in some case

studies, as reported in Section 5.2, process-based orchestration by Workflakes has

been coupled with monitoring and diagnostic means different from those of KX.

Furthermore, the design also enables experimenting with Workflakes as a stand-alone

software coordinator, even outside the dynamic adaptation context altogether.

In the remainder of this Section, the design of a controller facility like Workflakes is

presented. It encompasses - but keeps logically separated - the decision and

coordination roles of dynamic adaptation; it also acknowledges the strong mutual

dependency between the orchestration engine and the effectors it coordinates, by

providing a tight interface between them with abstract control and reporting

primitives, which differs from the loosely coupled interface connecting the other

platform elements.

Design of a process-based controller

The core of a process-based controller, such as Workflakes, is of course its enactment

engine. Engines can be centralized, or de-centralized, i.e., made up of a multiplicity

78

of task processors that are interconnected via some distributed communication and

state sharing means. For dynamic adaptation, a de-centralized architecture is the

better choice, because it allows to locate the task processors together with, or close to,

target systems substructures, which can be themselves widely distributed. It also

enables to delegate process fragments that pertain to those substructures to the most

convenient task processor for “local” execution. Decentralization enhances the

performance, robustness, and scalability of the enactment engine, and consequently of

the dynamic adaptation platform as a whole.

Decentralization of the enactment architecture implies the presence of mechanisms

for distributed data access and management across the task processors, including:

• Distribution of the specifications of the process: in the case of dynamic

adaptation, the various process fragments.

• Distribution of the artifacts produced and accessed by the process: in the case

of dynamic adaptation, information about the target system and its state.

• Distribution of the process resources: in the case of dynamic adaptation, the

effectors to be employed.

• Distribution of the run-time process state; recall that the overall process state

encompasses the state of each of its constituent tasks, the dependencies

between tasks, and the data and the resources described within the process.

Since – as noted earlier on in Section 2.4 - a number of state-of-the-art process

engines make available the necessary mechanisms for de-centralized enactment, in

the remainder those aspects are assumed and the focus is placed on the architecture of

a task processor in isolation.

79

Task processor

Process data manager

Data conduits Process executors

Integration facility
Task
Processor

Figure 8: Abstract view of a task processor.

To introduce the discussion, Figure 8 shows how a generic task processor can be

organized – independently from the specific process engine adopted, or the kind of

coordination problem at hand. A task processor typically revolves around a process

data manager, which is in charge to manipulate and maintain in a consistent fashion

suitable data structures that capture all the information that is relevant to the

enactment of the orchestration process. Such data includes an operational

representation of the process specifications loaded within the engine, the current

process state, any input or output data exchanged with external software entities,

representations of or pointers to process resources and artifacts, and possibly other

support or specialized information. The process data manager – in a de-centralized

enactment architecture – is also in charge to interact, exchange information and

80

synchronize its internal state with the other remote task processors that take part to

the same decentralized enactment engine.

The process data manager regulates the access to process enactment data on the part

of other elements in the task processor. Those other elements are modules that either

support process enactment and need to variously interact with the process data

maintained by the manager, or interface the task processor with internal external

components and tools that have some role in the process.

Strictly connected to process interpretation are the process executors in the task

processor. They are intrinsic elements of the process enactment engine, which

provide the machinery that ensure the correct execution of a process loaded in the

data structures of the process data manager, according to the operational semantics of

its specifications. Those facilities take the form of one or more computational

modules, devoted to interpret the loaded process representation and to incrementally

modify its state by scheduling, initiating and overseeing the enactment of process

steps.

Process executors may need at times in the course of the process to employ external

tools and applications to complete some work units. To that end, an integration

facility can be used, which enables and abstracts those interactions. Integration

facilities are usually dependent on the application domain and the tools they need to

male available to process executors.

The task processor also needs to be equipped with data conduits, because a quantity

of input and output data may need to be exchanged with external programs. Input data

must be relayed and converted into adequate formats suited to be used within the

81

process engine for its own purposes, in particular for updating the information

maintained in the process data manager. Also data generated as a by-product of the

process execution may need to be output and reported to external entities, possibly

after suitable re-formatting. The data conduits therefore need to operate in both

directions; they also may either work in batch mode (i.e., reading/writing data from/to

permanent or semi-permanent storage such as a database or the file system), or in

streaming mode (directly communicating with other executing applications, which

produce/consume immediately the exchanged data).

It is clear how in the context of an-application-to-application coordination process,

such as that of dynamic adaptation, the importance of data conduits becomes very

significant. For example, information captured in models of the target system, as well

as any update of its state, may be conveyed via these data exchange modules. A data

conduit constitutes also a valid way to implement the communication channel

between the diagnostic facilities and the controller, relaying process triggers to it.

Finally, data conduits can be used to transfer information to and from the part of the

system that is in charge of actuation, and of interfacing with effectors.

82

Behavioral Model

Diagnostic event

Internal
Decision-Making

Task
Processor

External
Decision System Process trigger

Effectors
Catalog

Process
Specs.

Effectors API

Process loader

Diagnostic event

Actuation sub-system

Figure 9: Design of a process-based controller.

Coming to the role of a task processor in the context of dynamic software adaptation,

the diagram of Figure 9 highlights the various interfaces that enable the functional

integration of a task processor embedded in a controller within the conceptual

architecture previously described. To that end, three major interfaces can be

recognized, dedicated to process loading, decision making, and effectors control.

The process loader is in charge to acquire some process specification and to load it

into in an appropriate operational form that is executable within the task processor.

Process loading can be performed both in “push” and in “pull” mode. The push mode

is implemented by an entity (a user, or some software) which explicitly requests the

process loader module to load some determined process specifications. The pull mode

instead is implemented by the task processor itself, which is able to react to some

83

event (for example, a process trigger), asking the loader to search for a determined

process specification, fetch it and load it.

Irrespective of the means used to load the process specifications, which are not

constrained by this architecture, the logic adopted is completely incorporated within

the process loader. In both cases, the loader can make use of another component,

which serves as a process repository. In practice, it implements a database that keeps

in store a collection of process specifications (describing process fragments) that

potentially need to be made available to the various task processors. No assumption

or limitation on the nature and the format of the stored specifications need to be

adopted at this stage. Also the way in which the process repository is populated may

widely vary: for example, the repository might enable dynamic addition of new

process specifications, or also the update of existing specifications with new versions.

Figure 9 also depicts the juxtaposition of the decision facilities and the task processor

within the controller. An internal decision-making module may be put in charge to

make a first evaluation of incoming diagnostic events, which can lead to the selection

– whenever necessary – of some process fragment to be enacted. The simplest way to

implement such an internal decision module can be either via pattern matching or

query mechanisms, which relate the format and the content of the incoming events to

some process specifications already present in the task processor, or contained in the

process repository and ready to be loaded via the process loader.

For more complex decision scenarios, however, it must be also possible to use an

external decision-making component with substantial computational capabilities.

Using an external decision facility allows to isolate the decision logic, which can be

84

at times quite involved, and delegate it to an external system. It is thereby possible to

separate more clearly decision aspects (for instance, which process fragment – if any

– is the best suited to achieve a certain adaptation under given conditions) from co-

ordination aspects (i.e., how to enact the selected process according to its

specifications).

Such a decision facility may be a third-party or otherwise stand-alone component. To

oversee the decision, that component must be enabled to access the original

diagnostic event, as well as any portion of accumulated knowledge about the current

state of the target system (captured by the gauges, and based upon the behavioral

model) and of the process, as maintained in the task processor. In that case, the

internal decision module serves as a connector between the task processor and the

separate decision system.

Directing actuation

Coming to the interface of the task processor with the actuation role, which is

arguably the feature that most strongly characterize a process engine devoted to

dynamic software adaptation, shows an Application Programming Interface

(API) and a connection with an actuation sub-system. That relationship is displayed

in greater detailed in Figure 10.

Figure 9

The actuation sub-system is in charge of instantiating, managing and guiding

effectors destined to impact the target application, as required by the enactment of the

dynamic adaptation process. It is made of a few essential components.

85

Relay

Activate

Configure
Task
Processor Recruit

Effectors Catalog Instantiate

Lookup

Effectors API

Figure 10: Interfacing the task processor and the actuation role.

The first component is an effectors catalog. In practice, it implements a repository

that keeps in store a collection of information about code artifacts that represent the

effectors that may be needed for the dynamic adaptation application at hand. The

information stored in that repository might differ with respect to aspects such as the

effectors’ purposes, their functionality, their methods, their technological

underpinnings, and more. For example, multiple effectors may have the same purpose

and functionality (i.e., their execution aims at producing equivalent side effects from

the point of view of dynamic adaptation), but may achieve it in different ways, and

may be implemented or compatible with different technologies. In principle, the

86

effectors catalog must include some mechanism (such as associated meta-data) for the

purpose of describing, discriminating and selecting suitable effectors for each task of

the dynamic adaptation process, and for the computing environment to be effected. In

some cases, also the executable code of the effectors – or some pointer useful to

retrieve such code – can be included within the repository; in other cases, for

instances when effectors come already embedded with the target components, only

the runtime handles to those already instantiated effectors is present in the catalog.

Notwithstanding the abovementioned possible heterogeneity of effectors, a significant

amount of standardization in the interactions between the process engine and the

effectors it coordinates can be achieved. For that, a high-level, conceptual interface

can be employed, which also helps in keeping cleanly decoupled the coordinator from

the subject of coordination across technologies and application contexts. Such an

interface is relatively simple at a high level of abstraction, since it provides only a few

primitives, which constitute a conceptual effectors or actuation API:

• Look Up: the ability of querying the effectors catalog and obtain in response what

code artifacts in the catalog correspond to suitable effectors.

• Recruit: the ability to summon and obtain control of some effectors, in order to

exploit them for the purpose of the adaptation at hand.

• Instantiate: A specialization of the Recruit primitive, which implies the ability of

creating new instances of effectors within the runtime environment of the

controller or the target system, for the purpose of their execution. Recruit applies

primarily to pre-existing effectors, and Instantiate implements the same semantics

on new effectors’ instances.

87

• Configure: customize effectors to the specific conditions of the adaptation they

are about to carry out, by means of parameter-passing, variable setting and other

similar means.

• Activate: launch effectors’ execution on top of target system components that

need to be impacted. That may involve the preliminary deployment of the

effectors.

• Relay: make available the means for effectors to report back to the task processor

the results of their work on top of target system components. Since the effectors’

work can have long-duration and can occur asynchronously with respect to

activation, it is not usually convenient to model the passing of results in a

request/response fashion, like that of Remote Procedure Calls (RPCs). It may be

more appropriate and general to equip the effectors in use with a data conduit,

which the effectors can employ whenever they need to relay data back to the task

processor.

With the exception of Look Up, all primitives tend to be strongly dependent in their

implementation on the technologies employed to develop the effectors, with their

idiosyncratic properties. In the Figure, the conceptual, high-level API is exposed as a

whole towards the task processor, thus providing it with a single, uniform manner to

interact with the effectors and command them. That API aims at effectively hiding

from the task processor any idiosyncrasy linked to the possible specific characteristics

of different effectors, and at interacting with said effectors in a transparent fashion.

The counterpart of that conceptual interface at the implementation level can be

constructed effectively by distinguishing among three different slots, which group

88

together subsets of the API primitives, and are differently implemented. The three

slots, which are shown in , are the following: Figure 10

• a slot for the Lookup primitive, whose implementation does not depend from the

nature of effectors and is therefore always available;

• a slot that groups the Instantiate, Recruit, Configure and Activate primitives,

whose implementation is technology-dependent. To accommodate multiple

implementations, this slot can be filled by adopting a plugin mechanism. Multiple

plugins may exist, developed according to the various available effectors

technologies, and can be loaded into the slot dynamically. A plugin is selected

and used every time a certain effector is looked up, to allow the task processor to

interact with the effector respecting the semantics of the primitives in the slot, and

at the same time in compliance with the technology of the effector;

• a slot for the Relay primitive, which is implemented also by means of technology-

dependent plugins. The plugin for this slot is selected, and passed to the

instantiated effector as part of its Configure stage. It provides to the effector a

communication channel back to the task processor (for instance, a callback

mechanism) to support the semantics of the Relay primitive in compliance with

the technology of the effector.

An important result of this architectural design is that the interaction between the

coordination and the actuation roles is kept simple, independently from

implementation concerns, because of the limited number and the high level of

abstraction of the primitives in the effectors API.

89

3.3 Applicability and scope

The spectrum of issues, problems and applications that can be addressed in principle

with dynamic adaptation techniques is rather vast. It is therefore important to define

the likely boundaries of applicability of the proposed approach, considering its most

distinguishing traits, that is, the use of process technology and the externalized stance

with respect to the target system. Therefore, although process-based coordination can

be employed also in internalized dynamic adaptation solutions, the discussion in the

remainder of this Section focuses on its use within an externalized platform, and

addresses two issues: what kind of dynamic adaptation problems are well or badly

suited for process-based coordination; and what kinds of target systems are feasible or

unfeasible.

Applicability scenarios

Let us consider the four declared major areas of application for autonomic computing

and similar initiatives, i.e., self-configuration, self-optimization, self-healing and self-

protection [32]: the application of process technology to the coordination role of

dynamic adaptation enables a variety of scenarios which apply, at a minimum, to the

problems of automating the configuration, healing and optimization of the target

system, and can extend also to partially cover its protection.

With respect to the target system configuration, a dynamic adaptation process may be

used first of all to coordinate and automate the deployment of a distributed software

application onto an available and suitable computing infrastructure. Deployment is an

ensemble of possibly complex but mostly repetitive technical procedures, which are

sufficiently self-contained and with a limited set of states and outcomes; therefore, its

90

automation is feasible, and likely to bring about significant advantages, especially

when it is repeated on computing environments of the same kind. In fact, numerous

commercial solutions exist, which cover some parts of the automated deployment

spectrum, such as installation [33], distribution [34], or update [35]; they are

increasingly common, and today a large part of commercial software packages,

including operating systems distributions, come with their own automated installer

and updater. Most of those solutions, however, operate on single software packages,

either in isolation on a single host, or by volume on a number of similar host

machines. The dynamic adaptation focus is instead on comprehensive, customized

and orchestrated deployment of multi-component applications on the part of a

general-purpose automated deployment facility, similarly to systems like the Software

Dock [36]; in that context, specialized installation, distribution, updating, etc. utilities

like the ones cited above can take the role of effectors, which can be employed under

the coordination of the generic deployment facility.

A distinction can be made between the initial application deployment and later re-

deployments: the initial deployment generally follows an explicit decision by some

system administrator who specifies when, where and how to dispatch and start up all

the application components – possibly with the support of appropriate configuration

tools. By enabling the insertion of specific triggers from an external conduit in the

control loop of a dynamic adaptation facility, it is possible to unify the initial

proactive system deployment and any subsequent re-deployments (partial or

complete), which may occur either automatically as a reaction to some runtime

condition in the deployed target system, or again following a directive coming from

91

an external entity, such as an administration cosole. A process that reconciles all

deployment cases can therefore be conceived, which re-uses the same overall logic,

and the same knowledge to describe and predicate upon its resources (the components

and packages of the software to be deployed, the computing environment at hand with

its topology, its characteristics and its state, the various deployment facilities that may

serve as effectors for this specific kind of adaptation, etc.).

Automated (re-)deployment addresses a number of configuration issues, by enabling

the on-the-fly addition or replacement of relatively coarse-grained features,

components and services in a system: an example is the automation of the various

administration concerns related to a system-wide upgrade without service downtime

(also known sometimes as staging) An example of a staging process, in the context of

a Workflakes experiment, is reported in Section 5.1.

In the course of deployment, another configuration issue that can emerge is the

elimination of any potential or detected conflicts with applications previously

deployed on the same distribution architecture. Another form of finer-grained

configuration that is naturally intrinsic to deployment, but also occurs in many other

adaptation contexts, is the application of appropriate systems settings and parameters

to single components, or to subsystems, or to the target system as a whole. The

dynamic adjustment of such settings to reflect the initial state of the computing

environment and of the target system at deployment time, as well as any subsequent

variations thereof, can be resolved with a reactive process that is fed with triggers

indicating that variations are needed.

92

Composite processes that variously combine (re-)deployment and parameters setting

have the potential to cover the vast majority of the dynamic configuration needs of

the target system. As a special case, it is worthy to consider the configuration - or re-

configuration - of the architectural layout of a distributed application, in terms of its

components and connectors. Process tasks enacting deployment strategies can take

care of the delivery and the launch of the various components on certain hosts, while

other tasks provide those components with the appropriate discovery, location and

networking settings, which allow components to find and connect to each other, thus

effectively putting in place the connectors of the architecture, which enable

components to interact. Those deployment and parameter-setting tasks need to be

appropriately interspersed, in order to build or modify the system architecture in an

orderly way, and the process can be fragmented in such a way to take care of each

recognizable architectural sub-structure autonomously. An example of architectural

re-configuration supported by Workflakes is reported in Section 5.3.

With respect to target system healing, one can recognize two major categories of

adaptation: fault recovery and fault avoidance. Fault recovery is fully reactive by

nature; assuming that diagnostics can correctly indicate the kind of fault occurred, the

main issue in fault recovery is related to the strategy chosen to fix or survive (i.e.,

overcome) that fault, while minimizing adverse effects on functionality and

performance. That choice largely depends also on where the fault has occurred among

the many layers of the stack that underlies the implementation of a distributed

software system. Recovery from hardware, system or network failures is clearly quite

different from, say, application level faults: in the former case it is more likely that

93

the recovery put in place with dynamic adaptation cannot actually fix the fault, but

rather overcome it by changing the configuration of the system in an appropriate way.

Limiting the discussion – for the sake of brevity – to the latter category, some of the

possible options are the isolation of faulty components or subsystems, their shutdown

and/or replacement, or more granular repairs that impact inner modules and settings

of the target components. All of those remedies may require the re-configuration of

target system elements and also some software re-deployment. It must be noted that

the enactment of fault-recovery adaptations may incur in a number of unforeseen

complications, due to the possibly unreliable state of the target system in presence of

a fault, and also because the diagnostic role may have uncovered the fault without

necessarily discovering its reason. Thus, alternative courses, re-planning,

backtracking, and other similar devices for managing those contingencies are often

prominent in processes that orchestrate fault recovery, increasing their degree of

complexity.

Fault avoidance requires possibly sophisticated predictive capabilities by the

diagnostic role of dynamic adaptation, which must be able to infer the probable

occurrence of a fault in the future, on the basis of the current snapshot of the state of

the target system and possibly its history. Since fault avoidance takes a proactive

stance with respect to fault management, in an attempt to preserve target stability and

improve quality factors such as availability and reliability. One difference with

respect to fault recovery processes is possibly that a constrained time window for

effecting the adaptation might need to be respected. Also, the activities in a process

aiming at the prevention of a fault are likely to lean more towards adjusting running

94

components, their state and their operation parameters to skirt trouble and approach

full efficiency, rather than repairing them, which often implies taking them off, since

restarting a component is at times the surest way to fix it.

With respect to target system optimization, the focus is on the management of the

resources employed by the distributed applications as a whole, and by each of its

components. Optimization processes try to automatically and dynamically tune those

resources, a goal that translates in practice into a continuous exercise in balancing

trade-offs. First of all, it is necessary to strike the right balance between maximized

performance for end users and minimized load for the computing and communication

infrastructure, under the ever changing usage conditions typical of many distributed

systems and services. On top of that, the allocation of certain resources must be

balanced among the target system components that compete for them at any given

time. Notice that those two different trade-offs are not orthogonal, and may interfere

with each another.

Optimization processes may be the most granular with respect to the adaptation they

pursue, as well as the ones that demand the fastest turnaround time between the

reception of a trigger and the fulfillment of the corresponding actuation. Orchestrating

some target system optimization may therefore require in certain cases specific logic

and activities, but many times may also re-use concepts and practices that are typical

of healing and configuration. For example, an optimization process aiming at the

dynamic load balancing of user requests for some service may need to deploy new

instances of the service software, re-configure the settings of the load balancing

facilities to take advantage of those new instances, and divert requests in excess from

95

overloaded servers before they might crash. The net overall result is an optimization

of incoming traffic and requests, but that effect is in fact achieved by a combination

of re-configuration and fault avoidance techniques. An example of such an

optimization, supported in a Workflakes experiment, can be found in Section 5.1.

Deployment

Parameters Setting

Fault Recovery Fault Avoidance

Optimization

Figure 11: Dynamic adaptation scenarios.

Figure 11, shows the relationships between the various dynamic adaptation scenarios

discussed above, and how solutions for those various scenarios are likely to build

upon one another.

As for target system protection, in a number of cases it can be equated to a form of

healing. For example, securing the target system against some attack is not

conceptually different from preventing a fault. Once again, it is only a matter of

semantics: in the latter case the cause of the problem is incidental, while in the former

case it derives from a malicious intent. Therefore, the same logic guiding fault

avoidance processes may apply for example to the rejection of a Denial-Of-Service

attack. Recovering system components infected by a virus, and getting rid of the

infection can instead be approached at times as a fault recovery problem, with the

96

mandatory extra requirement that system functionality should be preserved during

and following the adaptation that eliminates the virus.

In a variety of situations in which protection problems can be handled like healing

issues, dynamic adaptation techniques similar to the ones described in this work can

apply: among other examples, SABER [159] and Willow [31] approach the problem

of the survivability of software systems and services in those terms.

A major difference between system healing and system protection ensues when, to

ensure protection, it is necessary to take measures that have an impact externally to

the target system proper. For example, to protect some service offered by some

system within a certain organization, it may be necessary to modify the access rights,

trust policies, network topology, or other relevant elements at the level of the whole

IT infrastrucuture under attack, or at least of some substructure thereof. Entities that

are affected by those kinds of measures do not belong to the target computing

environment, unless it is defined in an extremely broad sense; that contrasts both

conceptually and practically with the way the control loop of dynamic adaptation is

conceived, with its endpoints well rooted in the target system (see Figure 2). In

particular, that Figure assumes that the actuation capabilities needed for dynamic

adaptation are all exposed in some way by elements of the target system; that

assumption in turn provides a well-defined context for both the coordination and

actuation roles. In order to undertake adaptations that affect the organizational

computing infrastructure at large, that assumption must be broken, in favor of a much

broader and all-encompassing vision in which a number of dynamic adaptation roles

must work across the whole organization and all of its information systems.

97

That is a different, challenging endeavor, which goes beyond the issue of providing a

technically suitable software infrastructure, but also needs to embrace and resolve a

number of organization-wide concerns. In other words, it entails moving from level 4

to level 5 in the autonomic capability model previously introduced in Section 2.2:

level 5 requires, besides the full automation of adaptation of level 4, awareness,

support and integration of organizational and business issues and policies within the

autonomic facilities. That represents a path along which the research presented here

can evolve in the future: one line of investigation according to which such integration

could proceed is the federation of business processes with dynamic adaptation

processes, which remains however out of the scope of this work.

Target system feasibility criteria

While the generic concept of dynamic adaptation applies in principle to about any

distributed software system, a number of considerations can be made on the kinds of

target systems that are viable for the approach proposed in this work.

A first issue that impacts the suitability of an externalized coordination facility, such

as a process-based one, regards those systems and components that come with some

built-in adaptation logic of their own. If some internalized dynamic adaptation

provisions – with its own decision and control policies - are active in some

components of the target system, those policies may conflict with a global adaptation

plan pursued by an externalized platform. That makes for a case of “process-in-the-

tool syndrome” [37], that is, the interference in the enactment of a coordination plan

on the part of the very subjects of coordination.

98

There are ways to overcome the process-in-the-tool syndrome and achieve a gracious

co-existence of externalized adaptation orchestration with internalized adaptation

provisions. For example, when some potentially disruptive internal adaptation logic is

present, documented and active, it is many times possible to design the orchestration

process to incorporate it in its own end-to-end plan. That can happen, for instance,

when the external coordinator is empowered to activate and de-activate the internal

adaptation mechanism at will, by issuing from some specific process step an effector

that has that side effect. That way the overall process can at certain junctures accept

to delegate certain forms of adaptations to the internalized features, but maintains a

control on when allowing delegation. If the local, internalized adaptation could

interfere with a certain more global adaptation plan , the coordinator could switch off

the internalized mechanism and enforce alternative ways to resolve the same issue.

Another possible issue regards the class of target systems that must operate under

precise timing constraints. Externalized dynamic adaptation may insert a level of

uncertainty with respect to the timing of operations of its target systems. The control

path put in place by the adaptation loop needs some time to be traversed from the

production of monitoring data to the execution of the appropriate actuation – no

matter how efficiently it is implemented. That can be defined as the end-to-end

response time of the dynamic adaptation control loop, which may influence the

execution time of the target system, or at least of that portion of the system that

undergoes adaptation.

There are a number of components to that response time. One component is

inevitably a communication delay, due to the fact that both the target system and the

99

dynamic adaptation platform implementing the control loop may be widely

distributed. Even in case stable and reliable communication channels which minimize

the delay and variance in communication time can be assumed – thus allowing to

assign an upper bound to that contribution – each of the diagnostic, decision,

coordination and actuation components in the dynamic adaptation platform also

provides its own contribution, deriving from the work they need to perform.

Actutation is probably the least problematic aspect, since effectors are limited

snippets of computational code which can many times be developed in such a away

that their execution can be appropriately bounded. The other roles are likely to pose

more complex problems.

In particular, a considerable slice of the dynamic adaptation response time is likely

spent within the coordination role. When expressing coordination, for instance as a

process, the temporal aspect is paramount in all but the most trivial cases: the various

activities that are to be coordinated need to be properly sequenced, and executed

accordingly, with later activities often depending on the reported outcome of earlier

ones. To that intrinsic temporal aspect of coordination, it is also necessary to add the

execution time of the coordination facility itself.

It may be particularly hard to characterize the component of the response time

contributed by the adaptation process overall with a constant upper bound (which

could be accounted for as a penalty, and added to the normal operation time of the

system). Each specific kind of adaptation may take a different time to complete, and

there may be considerable variance even among distinct occurrences of the same kind

of adaptation. That happens because of the dynamic nature of the coordination

100

process and of the dependencies between steps: each step in the task decomposition

hierarchy may unfold each time in very different sub-hierarchies of tasks, for instance

when exceptions are raised and their corresponding handler sub-processes are fired.

Given the significant delays that can be introduced in the response time of an

externalized dynamic adaptation loop by the orchestration of the whole process, and

the level of variability of those delays, “hard” real-time systems, in which all

operations must observe a fixed temporal upper bound, may not be very well suited

for this approach: while carrying out dynamic adaptation could resolve a number of

problems and criticalities in those systems, it may also induce an unpredictable extra

latency to their execution.

Some externalized dynamic adaptation facilities that are applied to cases with hard

real-time constraints exist; however, it can be noticed how they employ simplistic

approaches to, or even bypass alotgether, the coordination role. See for example

[181], which addresses survivability concerns. In it, each adaptation is a single

intervention, carried out by a carefully chosen computational effector, whose

execution time can be bound.

With respect to hard real-time constraints, internalized adaptation provisions may

have an advantage over externalized platforms, since they can achieve a better

response time, and a lesser variance thereof. In fact, following the introduction of the

dynamic real-time model in the late 80’s - early 90’s [39], a quantity of internalized

approaches and systems have been researched, to overcome the limitations of the

“binary” (guarantee or reject), static service management scheme for real-time

systems. RESAS [51] was possibly one of the earliest examples of those dynamic

101

adaptation solutions: it promotes a programming model for the specification,

development and enactment of internally adaptable applications, aimed specifically at

enforcing reliability and timeliness in real-time systems. A multitude of other works

have since then tried to address in a dynamic and adaptive way common concerns in

that field, related to issues like resource management [38] [52], and QoS (re-

)negotiation [41]. Mostly, those efforts rely on some form of specialized middleware,

which provides, in conjunction with support for real-time distributed communications

and computations, a number of built-in adaptive features, mechanisms and policies

that impact either the operating system level, or the application level, or both. Those

solutions tend to optimize the closed set of adaptation operations they provide, to

bound and minimize the induced latency, and sometimes also incorporate a model of

their response time [40]: they can thus use that model for their decision-making, and

opt for an adaptation compatible with the timeliness guarantees required by the

normal system functionality, if such an adaptation exists.

Those techniques could be somewhat extended also to externalized dynamic

adaptation solutions. In the case of KX and Workflakes, that means that the platform

would need to offer a closed set of possible adaptations, which would be mapped to a

number of process fragments of limited complexity and dynamism, such that their

enactment could be time-bounded with confidence. The diagnostic and decision

component would then need to take in account temporal aspects in their work: each

time the need for some adaptation were detected, only those adaptations that could be

safely completed within time bounds would be approved and fired. Such an extension

102

to hard real-time system, may represent another open theme of investigation for the

future development of this research.

The same techniques apply of course also to “soft” real-time systems, i.e., systems for

which timeliness of operation is a significant property, rather than a strict constraint,

and for which the failure to operate within time bounds but does not necessarily

equate to a fault. A significant part of the distributed applications of real-time

computing, in particular over the Internet, fall in the soft category, including, among

others, the increasingly prominent category of networked multimedia applications,

such as audio/video streaming. Soft real-time systems – as opposed to hard ones - are

also a more viable category of targets for externalized dynamic adaptation, given their

more relaxed timeliness requirements. Even for soft real-time systems, however, the

matter of the response time of the dynamic adaptation loop is very important: an

adaptation that is intended to impact some target operation may be effective only if it

completes within a certain amount of time (for example, in less or comparable time

with respect to the temporal requirements for that operation), while it may be useless

or even counter-productive in case it takes effect too late.

In this work, the dynamic adaptation of soft real-time systems has been

experimentally addressed, with the intention of validating the process-based

coordination approach under such demanding requirements, and testing the limits of

its applicability. One of the Workflakes case studies regards a typical soft real-time

distributed application, since it addresses the synchronized viewing of an audio/video

stream provisioned at different compression levels to a group of remote users, who

work as a team and employ multimedia clients with diverse profiles of host and

103

networking resources for their collaboration. Section 5.2 discusses how the process-

based dynamic adaptation exerted by the Workflakes prototype attempts to optimize

the settings of each client, in such a way that it can view the stream at the best

possible level of compression given its available resources, while remaining in sync

at all times with the other members of the group. Notice how that experiment

considers the group of clients as well as the server as participating all together in the

same target system, which is seen as a distributed CSCW application.

Another feasibility issue regards the number of self-standing distributed components

taking part in the target system, each of which may, in certain conditions, become a

subject of dynamic adaptation. While the majority of distributed applications are

constituted in practice of relatively few autonomous, inter-communicating computer

processes, each of which, in turn, is made of a limited number of recognizable

components, there are cases in which a single application results from the interactions

of hundreds or even thousands of components: Significant cases can be found in the

fields of agent-based computing (see [42]) and grid computing (for example, [43]

[44]). A large number of potential adaptation subjects obviously puts to test the

scalability of any externalized, end-to-end dynamic adaptation platform, and of each

of its roles, including of course process-based coordination. There are some works

that address the dynamic adaptation of classes of distributed systems that tend to have

a large number of components, such as the afore mentioned agent [45] [46], and grid

applications [47]; however, the application of process technology to the orchestration

of dynamic adaptation of that scale has not been yet sufficiently experimented with,

104

either in the present work5 or (as far as it is known) elsewhere. One can only try to

infer the feasibility of process technology to orchestrate effectively an adaptation

involving hundreds or thousands coordination subjects, by looking at some results

achieved by state-of-the-art distributed architectures for process enactment in other,

similarly demanding, coordination contexts. For instance, in the ALP [48] and

UltraLog [49] DARPA research programs, the decentralized architecture provided by

Cougaar [25] has been used to run logistic planning workflows in which hundreds of

coordination subjects participate. It may be important to notice that the time scale for

the enactment of a logistic plan is is in the order of hours and days, therefore, likely to

be orders of magnitude less demanding than that of the dynamic adaptation of

running software; on the other hand, the process logic needed for such a large scale

exercise is quite sophisticated, and complex to enact. Therefore, a clear conclusion on

the feasibility of process technology for the coordination of systems of such a scale

can not be easily reached, and this issue remains open for further investigation and

experimentation.

3.4 Critical assessment of the model

The way process technology is used in this work to achieve the orchestration of

dynamic adaptation, described in Section 3.1, is based on a number of ideas and

assumptions; among the most important ones, there are the reactive nature of the

process, its fragmentation, and the correspondence of the various fragments with

triggers originating from the diagnostic or the decision role.

5 None of the applications that were made available as case studies has those characteristics.

105

After having described how that model enables the definition of the architecture of a

process-based coordinator, and the scope of its applicability, it becomes important at

this point to discuss the assumptions at the basis of the model, or rather some of their

possible implications, in particular to see whether and how they could impose

limitations to the approach.

One major criticism is that the approach may remain limited to handling well known

and well-proved dynamic adaptation contexts and solutions.

With respect to context, that problem can derive from completely pre-determined

associations between triggers and the corresponding process fragments. One

motivation for such a strict correspondence is that a trigger, on the one hand,

represents an entry point into the reactive adaptation process, and, on the other hand,

signifies some (critical) condition related to the target system. To be able to properly

codify the trigger, in terms of the information it carries to the process and in order to

enable the firing of the corresponding process fragment, it may be necessary to know

the condition in great detail. That need contrasts with the greater flexibility available

in principle for the diagnostic role: the diagnostic facilities may be able to carry out

different kinds of inference on the basis of the flow of raw information originating

from the monitoring role, and report upon a variety of conditions relative to the target

system, including some whose semantics and format could have not been previously

analyzed, recognized and codified. Such a level of diagnostic sophistication may

remain inaccessible to the orchestration process, whenever any events corresponding

to unknown or new target system conditions cannot be mapped on the fly to a

corresponding reactive process fragment, but, on the contrary, each process fragment

106

is intended to deal with some target system condition defined a priori. The mediation

operated by the decision role between diagnostic events and process fragments can be

particularly important to avoid this kind of limitation.

Another possible limitation can originate from design decisions on the level of

process fragmentation. It is relatively easy to define fragments in such a way that

each of them handles fully on its own some macroscopic target system condition, and

captures a complete, internally coherent plan that moves the target system as a whole

from a well-known, diagnosed state to another well-known – and more desirable -

state (such well-known states are sometimes called postures of the target system

[31]). Those fragments are likely to be of considerable size and reach, and the

orchestration of the dynamic adaptation for each condition is hence completely

regulated by a single process fragment, in a fully planned ahead fashion.

Such a planned-ahead approach aims at producing scripted processes, with a limited

number of plausible paths and a few, predictable possible outcomes in response to

any given trigger. That kind of process design is attractive since helps making

different process fragments as disjoint as possible, which simplifies the construction,

understanding and maintenance of the overall process. Planned-ahead design also

reflects the way process technology is most commonly employed in other, more

traditional application domains, such as business or clerical work; in those contexts,

technologies and tools for process formalization and enactment are typically

introduced to automate from start to end already established and proven work

practices or procedures.

107

Unfortunately, in the peculiar application domain of dynamic adaptation, a likely

consequence of a planned-ahead approach with coarse-grained fragments is a lack of

open-endedness of the overall process, since those fragments are self-contained, have

limited inter-relationships and hence are hard to compose with one another to form

different plans. That implies that the process can formalize and orchestrate the

dynamic adaptation of the target system only for those conditions whose solutions has

previously been conceived and developed (and also thoroughly tested and validated).

Within a given target system, those conditions map to the subset of expected

problems. The guidance provided by the process for those problems is certainly

valuable, since it guarantees that the corresponding solutions are faithfully automated

according to a repeatable, consistent and controllable plan. However, target system

conditions that are known, but whose resolution is not yet well understood, cannot be

handled in that manner. To make the target system more fully autonomic, a process-

based dynamic adaptation facility that employs a fully planned-ahead approach may

always need to be supplemented by different kinds of management provisions, for

taking care of those “harder” cases.

This limitation is not inherent in the use of process technology for dynamic software

adaptation; rather, it is a design issue. A more desirable alternative to the limitations

brought about by a dynamic adaptation process that adheres strictly to a planned-

ahead design exists. It requires the codification of the process as a larger number of

finer-grained reactive adjustments to the target system, associated to equally fine-

grained triggers. While this issue can be seen simply as a bias in a trade-off regarding

the modality and the granularity according to which the overall dynamic adaptation

108

process is developed and structured, its implications are in fact quite vast. The use of

finer-grained, elementary process fragments and triggers effectively provides the

coordination facility with a “bag of tricks” that are lower-level, remain more generic

and can be used in many situations. In other worlds, it can improve the composability

of the dynamic adaptation process as a whole, thus enabling the construction of open-

ended adaptation processes that may enjoy greater variability and flexibility than the

scripted processes previously described. The concatenation of several of those low-

level fragments may incrementally guide the target system to an optimal, stable state

in a situational, open-ended way, rather than following a plan scripted a priori. Open-

endedness enables the process engine to enact adaptation strategies that may

considerably vary from time to time.

In part because the application of process technology to the orchestration of dynamic

adaptation is still a rather novel field, planned-ahead design of dynamic adaptation

processes currently remains dominant. Methods for the design of processes in an

open-ended, fine-grained and incremental fashion are currently not well outlined, and

deserve systematic investigation. Techniques that would enable to automatically

construct open-ended processes as a composition of those fined-grained fragments are

an equally open problem.

Also the experiments used for the evaluation of Workflakes, reported in Section 5,

employ processes that are largely planned-ahead. However, they have been

instrumental to reaching an understanding of the limitations of that approach and to

start devising how to overcome those limitations, leading to some ideas on how to

achieve a more open-ended orchestration of dynamic adaptation, which will be

109

presented in Section 6.3 and represent a major direction for the evolution of this

research.

It seems clear that the ability of defining open-ended processes would considerably

benefit not only dynamic adaptation, but also other application domains of the

process-based coordination of software systems, such as those outlined in Section 2.4.

The call for open-endedness in general stems from the observation that the number of

possible states in which multi-component, distributed systems can find themselves in

real-life operation condition is huge6. It is noticeable how that observation is also one

of the facts that drive the promotion and adoption of autonomic solutions in complex

computing environments. The flexibility of a coordination plan aiming to guide the

behavior of an ensemble of distributed software entities in all situations should, in the

ideal case, match the high level of variability that can be observed in the state of that

distributed system during its execution, as well as in its contextual and environmental

conditions.

6 In an extreme, but telling example, IBM has estimated that these days a multi-tier software system
built starting from multiple commercial-grade products and components may have as many as 1020

different configurations, resulting from the cross-product of all the configuration options of
participating components [30].

110

4 Implementation

A major principle that has been followed throughout the implementation work has

been that of re-using and composing selected existing technologies whenever

possible. There are several reasons for this. First of all, the contribution of this

research intends to be mainly in investigating and evaluating the concept of process-

based orchestration and its potential for achieving externalized, end-to-end dynamic

software adaptation; with respect to that goal, the development of a certain technical

solution that supports that concept serves mainly for experimentation purposes. Then,

one of the working hypotheses at the basis of this work is that process / workflow

technology is at the present time sufficiently mature in its major traits to provide the

right kind of support to the coordination role of dynamic adaptation. Furthermore,

since one of the main concerns of externalized dynamic adaptation is the ability to

handle not only brand new systems, but also component-based and legacy systems, it

makes sense to adopt a similar stance with respect to the construction of the dynamic

adaptation facilities themselves.

Therefore, implementation efforts have focused on using, adapting and integrating

carefully selected existing process enactment tools, process specification paradigms

and also effector technologies to be orchestrated; moreover, a lot of attention has been

given to easy integration and interchangeability, in order to remain open to changes

involving different implementation options of any of the constituting elements.

The experimental and development work for Workflakes has produced two

successive implementations of the process-based controller design described in

Section 3.2.

111

Besides a number of incremental improvements, derived from the insights and lessons

learned from experience, the main difference between the first and the second version

of the Workflakes implementation regards the way the dynamic adaptation process is

represented loaded and processed within a Workflakes task processor.

In its first version, the Workflakes engine employed process descriptions that are

expressed via a set of coding patterns directly codified in the Java programming

language, which are then dynamically loaded and executed as Java classes and

objects into the engine at run time.

In its second version, instead, Workflakes has adopted a state-of-the-art, high-level

process specification language (Little-JIL [19], see Section 4.2 for details), and the

Workflakes runtime incorporates appropriate class libraries and mechanisms to

support the loading, interpretation and enactment of process specifications expressed

in that formalism.

Clearly, as in any paradigm change that elevates the level of abstraction employed for

some practice, that difference benefits primarily the amount of work that is needed to

develop the orchestration process, and, consequently, its understandability and

maintenance. Furthermore, by embracing an existing formalized process specification

formalism, it is also possible to focus on the evaluation of how well current process

technology addresses any specificities inherent to dynamic adaptation processes,

which features are most useful and which others are insufficient or even missing.

112

4.1 Workflakes v. 1: coding the process in a programming

language

Since its first implementation, Workflakes has relied on the process enactment core of

the Cougaar open–source distributed platform [25] as the basis upon which to develop

the runtime of the dynamic adaptation coordinator.

Cougaar is a Java-based open-source platform for the creation and management of

large-scale distributed applications, whose centerpiece is a decentralized process

planning and execution engine. Cougaar includes resident process representation and

enactment capabilities, which owe much to the domain of logistic planning. Typical

Cougaar applications regard in fact the elaboration and automation of military

logistics plans, which involve a large number of coordination nodes and a multitude

of resources. To that end, Cougaar includes some advanced features, such as real-time

monitoring of the process execution, evaluation of deviations or alternative plans, and

selective re-planning. Cougaar supports a mechanism for the substitution of the

default process formalism specialized on logistics planning with others; it also

supports composition of complex applications, via process federation.

The motivation for the selection of Cougaar as the basis for the Workflakes

enactment engine is multifold: for instance, its support for large-scale distribution,

coupled with its proven robustness and performance derived from the logistics

application domain, even as a non-commercial prototype; furthermore, the

availability of its code base as open source, plus the availability of know-how and

support on the part of an active community of developers advancing and maintaining

that open-source project; the option to integrate different process formalisms; finally,

113

the possibility of synergic work within the context of the DARPA DASADA

program, in which members of the Cougaar development team were also involved, as

representatives of BBN Technologies, which is strongly involved in maintaining the

Cougaar open-source initiative and community.

Version 1 of the Workflakes implementation was built on top of Cougaar release 8.8,

and adopted its typical run-time architecture, based on a number of largely

autonomous decentralized task processors that are interconnected via a distributed

tuple space, named the Blackboard. In Version 1, the main focus was to come up with

an implementation that could represent a valid proof of concept and constitute an

operational basis for experimenting with case studies and getting hands-on

experience. For that reason, it was decided not to address at that stage the

investigation of suitable process formalisms for dynamic adaptation, and how to

integrate and enact them in the Cougaar runtime. Instead, the resident logistics

planning was adopted, and the dynamic adaptation processes employed in the various

experiments conducted with Workflakes Version 1 were expressed according to it.

In Cougaar, there is no dedicated process modeling facility, such as an editor of

process specification documents. Processes are instead directly represented as

executable code and programmed in Java. To that end, Cougaar provides a library of

classes that capture many basic process concepts and abstractions within a set of

relatively low level coding patterns [160].

The basic unit of a process in Cougaar is the task, which is represented by the

homonymous Java class Task. A Task is seen as an action, and as such is modeled as

a Verb, which identifies it. A Verb can have a direct object and multiple prepositional

114

phrases, taking indirect objects. Prepositions and objects (direct as well as indirect)

are the cosntrcuts used to codify the bindings to a task of resources and artifacts,

which are represented by objects of the Asset class and its subclasses. A task in a

certain Cougaar process can therefore be represented by a signature in the form:

<Verb> <Direct Object> [<Preposition> <Indirect Object>]*

for example:

Deploy Server Upon Host-Machine Using Tool

where Server, Host-Machine and Tool represent Asset types that need to be used for

the task Deploy.

Other Java classes that take part in the specification of a task in Cougaar are

Preferences, which in a typical example pertain to the temporal scheduling of the task

(e.g., within 1 hour), but can also be predicates on other Aspects, i.e., quantitative or

logical features attached to tasks and groups thereof. There are also Constraints that

can be imposed on Aspects: a typical way to employ Constraints is to define

precedence relationships among tasks, for example for sequential or parallel ordering.

A single task is therefore by itself a collection of objects that needs to be properly

instantiated.

Other Java classes in the same Cougaar class library, termed PlanElements, describe

and regulate the grouping of process sub-structures made of inter-dependent tasks.

Since Cougaar uses principally task decomposition, the Expansion of a non-atomic

task into a full-fledged sub-process is the most important PlanElement type. An

Aggregation is another PlanElement type, which represents a fan-in point for the

process flow, in which multiple parallel tasks are merged into a single task. The

115

Allocation PlanElement type defines instead the runtime binding of asset instances to

a task instance, against the direct and indirect objects in the signature of that task.

There are other classes still, which provide mechanisms for the evaluation of

Workflows, i.e., enacted process sub-structures with their attached aspects and

preferences, and which can be programmed to oversee their planning, for example to

guarantee that any imposed Constraints are actually met by the process hierarchy as it

unfolds.

It is clear that the experience of the programmer with the class library sketched above

is an essential tool to correctly convey the specification of a non-trivial Cougaar

process in a set of Java objects, which get loaded and reside in the Blackboard of one

or more task processors.

With respect to the runtime, Cougaar employs a plugin approach to compose and

customize the functionality of each single task processor. Each plugin implements

some particular logic or provides some specific capability; it interacts directly with

the Blackboard, and, through the Blackboard, indirectly with other plugins or other

task processors. For example, the process execution mechanisms within a task

processor are implemented as a set of plugins that typically includes a scheduler, a

state and plan evaluator, an allocator of resources and data, and possibly others. They

subscribe to the Blackboard and start to evaluate, schedule, fire and expand process

tasks, allocate resource and data assets to them, manipulate their state, and also

execute any computational functions that may be associated to tasks. The runtime

libraries of Cougaar offer base implementations for those core plugins, which are

however devoid of any logic on how to deal with Blackboard objects representing a

116

certain process. It is another responsibility of the Cougaar programmer to specialize

by inheritance those base implementations, in order to correctly handle the semantics

of the process specification objects that he/she loads in the Blackboard.

Workflakes embraced the plugin philosophy of Cougaar, and its implementation was

largely carried out on top of the afore mentioned facilities, by developing a set of

specialized plugins. Those plugins implement together the architectural blueprints

described in Section 3.2, and – as it is discussed below – supplement normal Cougaar

functionality in two major ways: they implement facilities for the integration and

handling of effectors as first-class process entities; furthermore, they offer

mechanisms to dynamically load and in the engine of process specifications.

As shown in Figure 12, a typical task processor in Version 1 of Workflakes includes a

number of plugins. Several plugins are what Cougaar calls Logic Data Model (LDM)

plugins. They reify the design of data conduits discussed in Section 3.2, and are

employed in the first place to import and convert KX gauge events in terms of

process-relevant facts stored in the Blackboard; another LDM plugin is devoted to the

interface with the effectors catalog; others can be used to convey and maintain

internally the knowledge about the target system and its state maintained in the

behavioral models, communicate that knowledge to other parts of the dynamic

adaptation platform, or otherwise wrap generic external systems, such as decision

facilities.

Moreover, the essential components overseeing process enactment are: an Expander

plugin, which loads process definitions, spells them out as hierarchical

decompositions of tasks and schedules them; an Allocator plugin that maps scheduled

117

tasks to resources (among which are effectors and target system components) as

needed; and an Executor plugin that handles the instantiation and execution of

effectors and encapsulates the actuation subsystem of the controller that regulates all

interactions with the actuation role of dynamic adaptation.

Blackboard

Expander Plugin

Executor Plugin

LDM Plugins

Allocator Plugin

Gauge events

Behavioral Model

Effectors
catalogue

BlackboardBlackboard

Expander PluginExpander Plugin

Executor Plugin

LDM Plugins

Allocator Plugin

WVM

Figure 12: Representation of a task processor in Workflakes Version 1.

One aspect in which Workflakes substantially extends and specializes a generic

Cougaar task processor is precisely the focus on integrating actuation facilities. In

Version 1, the preferred option for implementing effectors is employing mobile code.

Mobile code is intuitively a particularly apt technology for fulfilling the actuation role

within an externalized dynamic adaptation infrastructure, since by its very nature it

operates on the target system from the outside. That guarantees that new forms of

adaptation computations can be easily developed and deployed at any time onto the

target with minimal disruption to service operation, once that the target components

are equipped with the facilities necessary to exchange and execute mobile agents. In

118

particular, the first version of the Workflakes implementation was integrated with the

Worklets mobile agent platform, which the Programming Systems Lab had developed

originally for unconnected reasons [70], and then adopted also for dynamic adaptation

[7]. Worklets are code-carrying agents: each worklet is a container that carries Java

mobile code snippets (termed worklet junctions), and deposits them onto one or more

target components, according to a programmable trajectory. Once deposited, a

junction is governed by programmable constructs that specify certain facets of its

execution, such as conditional execution, repetition, timing, priority, etc. The agent

transport facilities and the code execution environment are provided by Worklet

Virtual Machines (WVMs) residing at all “stops” in a worklet trajectory. The

availability of WVMs embedded in all the target system components that may need to

be visited by incoming Worklets is therefore a pre-requisite to use this mobile code

approach.

Workflakes regards effectors’ code snippets as first-class resources for the dynamic

adaptation process. It takes care of selecting appropriate effectors, configuring them

with any data of interest coming from the process context (that is, the parameters

flowing into the process task that instantiates and invokes an effector), loading them

onto worklets, and dispatching those worklets onto the target system, to induce the

side effects intended by the adaptation process. On their part, worklets effectors are

configured to return to base in all cases, whenever they are finished with their work:

that way, they report back to the process the outcome of their work, which may be

critical to steer the rest of the adaptation this or that way.

119

All of that occurs typically as part of the execution of a leaf task in the adaptation

process, and is accomplished by the Executor plugin. That plugin incorporates a

WVM, which acts as the “launching pad” for worklet effectors. The Executor plugin

collaborates with the effectors catalog, which for worklets takes the name and the

form of a Worklet Factory. A Worklet Factory is composed of a repository of

junctions, and a mechanism for searching, instantiating and configuring junctions. In

the Worklet Factory, it is possible to associate semantic descriptors to junctions,

which can be used to retrieve the appropriate effectors for the various process tasks:

that is typically a three-ways match, which must take in account the semantics of the

process task that requires the instantiation of an effector, the description of the

junctions in the catalog, and the knowledge about the characteristics of the target

components to be effected.

The level of sophistication used for implementing that match may greatly vary: from

a simple lookup of the junction class name on the basis of some information attached

to the process task that requires an effector, to the evaluation of architectural

knowledge captured in the behavioral models available to the dynamic adaptation

platform, to semantic reasoning on ontologies like those employed in Semantic Web

contexts (e.g., OWL [161]).

Workflakes Version 1 was initially tightly coupled with the worklet technology, and

incorporated specialized, ad hoc provisions for interacting with them. Later on, other

options for integrating effectors were investigated. For example, SOAP-based

messaging was used in a few experiments. Those alternative experiments led to a

more clear-cut decoupling of the Executor plugin from actuation technologies, and

120

eventually to the design of the high-level actuation API as it is conceptualized in

Section 3.2, which was implemented later on in Version 2 (see Section 4.2).

In Workflakes Version 1, there is another fundamental way in which the task

processor interacts with and exploits worklets, which also represents the other major

extension with respect to the underlying Cougaar technology. Workflakes Version 1

uses worklets also to load process definitions on the fly onto task processors, either

with a pull or a push modality.

The main rationale for that is that the dynamic adaptation of target applications is

likely to call for dynamically adaptable coordination and control. That contrasts with

the Cougaar approach of hardcoding the process logic in a software program written

within process execution plugins. In an effort to provide support for dynamic process

loading and process evolution, as well as in an attempt to pull up somewhat the level

of abstraction for the specification of processes, albeit in the absence of an abstract

modeling language, a set of shell plugins were implemented, to substitute for the base

Cougaar implementations of core plugins and LDM plugins. Also shell plugins in

Workflakes – just like the base Cougaar plugin classes - are devoid of any hard-coded

logic related to any particular process, but instead of supporting the implementation

of process semantics via inheritance and specialization, they accommodate the

insertion of process semantics at runtime from incoming worklets that carry

appropriate code.

When a Workflakes task processor is launched with a certain configuration of

plugins, they are all initially idle, and are merely indicative of the kinds of service and

functionality that task processor is meant to offer within the overall distributed

121

Workflakes engine. Shell plugins can then be activated at any time by the injection of

specialized process definition junctions containing the Java code that implements

some process specification. Worklets dynamically deploy those junctions onto one or

more task processors and their shell plugins. Only after such deployment, shell

plugins acquire a definite behavior, and start taking part in the enactment of the

process.

The main advantage of that scheme is that the process enactment infrastructure and

the process specification remain more clearly independent. No modification of the

core process enactment mechanisms is required anymore every time a new process

must be defined; process programming, although still carried out in Java, remains

confined to the development of a certain number of process definition junctions, and

is conveniently supported by a relatively small, dedicated class library.

Furthermore, this process delivery mechanism is effective for a centralized as well as

a more scalable, decentralized process enactment architecture. It may, for example, be

used in the pull modality to incrementally retrieve process fragments from a process

repository, only when requested to handle certain specific adaptations, or in the push

modality for on-the-fly process evolution across a distributed Workflakes installation.

A cohort of process definition worklets can be configured to distribute different

process fragments to a number of task processors, as it is most convenient for

execution: that can be used also for migration of process specifications at run time

between nodes, which enables various forms of dynamic meta-adaptation of the

process-based controller itself. In this scheme, since process are specified by

122

developing a small set of worklet junctions, the Worklet Factory which has the role of

the effectors repository, doubles up as the process repository as well.

Finally, the interplay of shell plugins and process definition junctions – as

implemented in Workflakes Version 1 - provides a limited set of uniform coding

patterns, which guides and simplifies to some extent the work of defining processes.

4.2 Workflakes v. 2: employing a process modeling

notation

Following the experience gained in implementing the first version of Workflakes, and

the lessons learned in applying it to a number of case studies (see Sections 5.1, 5.3

and 5.4), a second implementation iteration was carried out. Besides the need fo a

more generic and abstract actuation subsystem – as already mentioned – it was clear

that the other major outstanding concern was the support of some high-level,

expressive and formal process specification language, which could be accommodated

by the Cougaar runtime. The rational was to significantly simplify the task of

developing, testing and maintaining non-trivial dynamic adaptation processes in

Workflakes. As a consequence, the majority of the effort in Version 2 was spent in

designing and developing the integration of a process language in the Cougaar

runtime. Little-JIL [19], developed at the University of Massachusetts at Amherst,

was the language of choice for this experimental development. Some of the major

characteristics of that language, which guided that choice, are listed below:

• Little-JIL has an explicit focus on agents coordination: therefore it naturally

leans towards problem domains that – as discussed in Section 2.4 – carry a

123

number of similarities with respect to those faced by dynamic software

adaptation.

• Little-JIL provides well formalized execution semantics for a rich set of

process definition constructs. Among other things, it includes sophisticated

support for exceptions and their handling, which are crucial for dynamic

adaptation (to handle contingencies and implement alternatives, backtracking,

compensations, etc.).

• It offers a high-level graphic language and editor.

• Processes are expressed according to a task decomposition hierarchy, which

maps well to the chosen model for dynamic adaptation processes described in

Section 3.1, as well as to the major constructs that have built-in support in the

Cougaar runtime libraries.

• Process specifications are modular and support well the composition of

fragments: a sub-process in the main process specification document can be

represented simply by its parent task, while can be fully specified with all of

its hierarchy of sub-tasks in a different document.

• Bindings for the data model can be included in and referenced from within the

process diagram, which facilitates representing data that must be conveyed to

effectors, as well as the effectors themselves.

All of the characteristics above indicated that providing support to processes defined

with Little-JIL in the second release of Workflakes could represent a significant

enhancement of the expressive capabilities of the system, and consequently of its

usefulness. On the other hand, the major difficulty lied in being able to port in a

124

faithful way the rich set of process constructs made available in the Little-JIL

language within the Cougaar runtime and its computational model. While the generic

structure of workflows according to both approaches is a task decomposition

hierarchy, some of the more sophisticated Little-JIL process constructs cannot be

readily expressed in terms of the core workflow class libraries and API of Cougaar.

Some noticeable constructs are outlined below (for a more complete overview refer to

[19] and the language documentation at http://laser.cs.cumass.edu):

• Advanced sequencing modes for the workflow of sub-processes originating

from a parent step. Besides classic sequential and parallel flows, the other

modes supported are: choice, which non-deterministically selects one of the

sub-steps for execution; and try, which tries in sequence all the sub-steps, until

one is successfully executed.

• Pre-requisite sub-processes attached to any step, which are enacted before that

step, and whose successful execution determines if that step can be enacted.

• Post-requisite sub-processes attached to any step, which are enacted

immediately after the workflow of that step is finished, and whose successful

execution determines if that step can itself be considered successful.

• Four different semantics for catching, handling and consuming exceptions:

continue, which does not change the scheduling of the workflow of the step

catching the exception in any way; complete, which forces the immediate

completion of the step catching the exception; rethrow, which terminates the

step catching the exception and passes the exception one level up in the task

decomposition hierarchy to its parent step; and restart, which forces the step

125

catching the exception to start its workflow anew. Each of those exception

handling modes can also be associated to a sub-process (a handler step) that is

enacted just before the exception is consumed by the step that caught it.

• Cardinality of the transitions between steps, which determines how many

instances of a given sub-step (default is 1) are to be enacted for the workflow

of the parent step. Cardinality values can be constant values, or can be

variables, linked to the size of a resource set passed from the parent step to its

sub-steps.

Because of all of the above, a number of new, custom plugins had to be developed, to

aid in the translation and execution of a Little-JIL process. Each of them takes care

individually of certain Little-JIL constructs and specificities; all together, they

cooperatively implement all the necessary capabilities for a Little-JIL enabled

Cougaar task processor. The structure of a Little-JIL enabled task processor is

displayed in Figure 13,. For the integration, Cougaar release 9.6 and Little-JIL 1.3

were employed.

In Workflakes Version 2, process specifications are codified directly in the Little-JIL

graphic editor, thus setting the control flow and the data flow of artifacts through

tasks, as well as the resource allocation requirements. Resources and artifacts, in

accord to the data modeling method adopted in Little-JIL are defined as Java classes:

those classes can be themselves object-oriented implementations of data and

resources, or can represent wrappers for the management of data and resources

(possibly legacy) that remain external to the process. In both cases, their definitions

are included in the process specification document (also called a Little-JIL diagram).

126

Effectors
Catalog

LDM Plugins

Little-JIL
Diagram

Blackboard TaskExecutorClassPlugInServlet

Process
Repository

LittleJILExpanderPlugIn

TaskExpanderPlugIn
ExceptionHandlerPlugIn TaskAllocatorPlugIn

Figure 13: Representation of a task processor in Workflakes Version 2.

A process diagram can be output by the editor in two formats: as a serialized set of

Java objects, or as an XML document. The serialized (binary) format is the most

commonly used, since it allows to get the whole diagram in or out of the memory of a

Java computer program very efficiently and reliably. Workflakes currently employs

the serialized form; a diagram can be input to a task processor by using a specialized

Servlet component that is available in the Cougaar framework, namely the

LittleJilLoaderServletComponent. By using a servlet mechanism, Workflakes Version

2 necessarily leans towards the “push” modality for loading process specifications

into the enactment engine. As an example, it could be the decision role of the

dynamic adaptation platform that would select an appropriate diagram from the

process repository and invoke the servlet to load that diagram into Workflakes.

127

With a high-level, formal description of the process that is developed outside and is

then interpreted within of the process engine, and with the servlet mechanism

mentioned above, most of the motivations for shell plugins and workflow definition

junctions as conceived in Workflakes Version 1 are not cogent in Version 2. In fact,

Version 2 plugins that represent process execution mechanisms in the engine are

specializations of standards Cougaar plugins, not shell plugins. Shell plugins can still

be used in Version 2 to enable the dynamic modification of the behavior of

components in the engine devoted to other purposes: for instance, LDM plugins that

are used for the exchange of data with external sources and sinks, or for the

interaction with other elements in the dynamic adaptation platform, such as the

decision facilities or the actuation subsystem.

Notice in fact that, to complete the information needed for running the dynamic

adaptation process, data about effectors that are to be used in the course of the

dynamic adaptation process must also be loaded to supplement the process diagram.

That is accomplished through an LDM plugin that interfaces with the effectors

repository, and can be done together with the process loading (in push mode), or later

on, on a per-need basis (in pull mode). Data about effectors is captured by assets that

subclass ExecAgentAsset. They provide explicit associations between certain leaf

tasks in the dynamic adaptation process and certain effectors: those associations allow

the process engine to instantiate or recruit specific effectors (for the definition of

Instantiate, Recruit and other effector-handling primitives refer to the discussion on

the actuation API in Section 3.2) when needed by the process as it is enacted.

128

A loaded process diagram is interpreted by the LittleJILExpanderPlugIn, which

traverses its structure and creates Cougaar Task instances in the Blackboard for each

Little-JIL step, and recursively for each of its sub-steps. That plugin sets constraints

correctly for sequential or parallel execution, and creates other structures of Cougaar

tasks, to capture appropriately certain specific constructs, such as cardinality, pre- and

post-requisites, and the try and choice sequencing modes of Little-JIL.

While the LittleJILExpanderPlugIn is concerned with the translation of Little-JIL

diagrams into an internal runtime representation, the TaskExpanderPlugIn has the

main purpose of advancing the execution of the process by working on that

representation. The TaskExpanderPlugIn evaluates the outstanding constraints of

each non-atomic (parent) task that is put in the blackboard by the

LittleJILExpanderPlugIn; in case all constraints are satisfied, it creates an expansion

that effectively initiates the enactment of that task and contains some of its subtasks

In accordance with the semantics of the corresponding step, the subtasks to be

inserted in the Expansion change (e.g., it initially includes only the first subtask for a

sequential task, or all of the subtasks for a parallel task, and so on). Thus, the

TaskExpanderPlugIn incrementally creates the entire task decomposition hierarchy of

the process as it progresses, from its root down to its leaf tasks.

Leaf tasks – i.e., the loci in which the coordination and computational semantics of a

dynamic adaptation process come together - are managed by the

TaskAllocatorPlugIn. Its main purpose is to bind to each posted leaf task any

effectors or other computational entities (such as helper functions) that need to be

executed at that point in the process; it accomplishes that by creating an appropriate

129

instance of a Cougaar Allocation. A completed allocation includes an

ExecAgentAsset as an assigned resource, and signifies that the leaf task is ready to

carry out its side effects on the target system through the actuation subsystem.

Within the process engine, the plugin in charge of managing generic effectors and

their execution, and therefore of implementing the actuation subsystem according to

the design of a process-based controller in Section 3.2 is the

TaskExecutorClassPlugIn.

Effectors in Workflakes Version 2 can be worklets, as originally in Version 1, or

other computational facilities that can be exploited to actuate the target system. All

kinds of effectors in Version 2 are uniformly wrapped by and accessed through a Java

interface that is named ExecutableTask. Classes implementing that interface are

assumed to encapsulate the internal mechanics, functionality and logic of some

effector, and provide a simple way to develop effectors of various types. The class

name of the ExecutableTask specialization provided by an effector is part of the

information stored in an ExecAgentAsset. In all experiments, effectors have been

coded in Java; to integrate non-Java effectors, one can rely on the cross-platform

interoperability facilities made available by the Java framework, such as the Java

Native Interface (JNI) [162], and subclass ExecutableTask to expose those facilities.

The TaskExecutorClassPlugIn takes control of ExecutableTask instances by looking

at the allocations published in the Blackboard by the TaskAllocatorPlugIn; it then

decides whether to recruit an existing effector of the kind specified in the

ExecAgentAsset of the allocation, or – if needed - creating a new instance of it; then,

the TaskExecutorClassPlugIn activates the effector by invoking its operation through

130

the ExecutableTask interface. The TaskExecutorClassPlugIn also provides the

methods that allow to relay back to the process the return data generated by the

effector’s execution, which must always include a success/failure flag.

Finally, a Little-JIL-enabled task processor includes the ExceptionHandlerPlugIn,

which is in charge to implement the logic necessary to comply with the various kinds

of Little-JIL exceptions. The exception mechanism can be used to describe internal as

well as external contingencies that can impact the dynamic adaptation process.

Typical external contingencies exceptions are thrown by the

TaskExecutorClassPlugIn when a task fails, or by the TaskAllocatorPlugIn when

some piece of data or some resource cannot be found and bound to a task as needed.

Internal contingencies exceptions are instead typically thrown as a part of the side

effect of the computational actions carried out by effectors.

Since in the Little-JIL language the handling of exceptions can be defined in a variety

of ways, each with its own semantics, the language provides sophisticated support to

the kinds of exception handling that are necessary for dynamic adaptation processes,

and in particular to compensations. To properly support compensations, an exception

handling semantics that is likely useful in many cases is the rethrow, coupled with a

handler step. That allows to modularize compensations: for each side effect that does

not apply anymore as the consequence of the exception, a process fragments in charge

of undoing that side effect can be defined. Furthermore, rethrowing the exception

allows to traverse the various levels of the task decomposition hierarchy back up until

all unwanted side effects are compensated.

131

5 Experiments

Several experiments of different scale and in varied application domains have been

carried out to validate the KX externalized platform for dynamic software adaptation,

and the Workflakes process-based coordinator. Case studies to date have considered

distributed target systems that range from Internet-wide information systems, to

Business-to-Customer (B2C) marketplaces, to multi-channel instant messaging

applications, to collaborative multimedia systems. The principal traits of those case

studies are presented hereby, together with the most significant results and lessons

that have been drawn from them.

It is noticeable that while most of the case studies have been implemented and

evaluated by components of the same research team that developed KX and

Workflakes, others have been carried out by external organizations, in the context of

multi-party collaborative research projects7. One such case study is reported in this

document - necessarily with less detail than the others - since it helps to highlight the

usability and usefulness of this work, although in the state of a research prototype, in

contexts that were not known or under the full control of the prototype developers.

Finally, notice that among the case studies presented below, the majority was

implemented by using the earlier version 1 of Workflakes. Only the AI2TV case study

of Section 5.2 has been carried out in such a time frame that it could exploit version 2

of the prototype.

7 Specifically, the case study discussed in Section 5.2 was developed within the EURESCOM project
P-1108 (OLIVES).

132

5.1 Instant messaging service

Background

Figure 14

Figure 14: The IM service architecture

 represents the architecture of a J2EE-based multi-channel instant

messaging service for personal communication (IM in the remainder), which is

currently offered on a 24/7/365 basis to tens of thousands of customers through a

variety of channels, such as the Web, PC-based Internet chat, Short Message Service

(SMS), Wireless Application Protocol, etc.

R-DBMS

Shared state

 IM IM IM IM IM
 Server Server Server Server Server Server
 Farm

Web Appl Web Appl Web Appl Web Appl
WAP Gateway WAP Gateway

Load Balancing

SMS-C

Mobile
NTW

PC Client PC Client
browserbrowser Clients

The service runtime environment consists of a typical three-tiered server farm: a

commercial software provides a common load balancing front end to all end-users

133

and redirects all client traffic to several replicas of the IM components, which are

installed and operate on a set of middle tier hosts. The various replicas of the IM

server all share a relational database and a common runtime state repository, which

make up the backend tier, and allow replicas to operate in an undifferentiated way as

a collective service. Some of the IM servers are wrapped by Web applications

running on commercial J2EE application servers; others may provide additional

facilities, which handle access to the service through specific channels, such as SMS

or WAP, and interoperate with third-party components and resources, e.g., gateways

to the cell phone communication network.

Case study description

The case study addressed two main goals: enhancing the Quality of Service (QoS)

perceived by end users, and facilitating service management by the staff in charge of

supporting such a complex distributed application.

With respect to QoS, the requirements of the case study focused on resolving existing

load and availability problems by automating service scalability, as well as

reconfiguring promptly and opportunely service parameters related to serving client

requests efficiently. As for service management, the requirements focused on the

automation of the deployment, bootstrapping and configuration of the various service

components, the continuous monitoring of those components and their interactions,

and the support for “hot” service staging via automated rollout of new versions and

patches without service interruption. Together, those requirements address

configuration, optimization and healing aspects.

134

All of those requirements are captured and addressed within a dynamic adaptation

process automated by Workflakes. This process requires – among the logic and data

loaded at startup onto the Workflakes engine – explicit knowledge about the service

architecture and the runtime environment of the server farm. That knowledge is

currently codified in a proprietary way: it is expressed as data that is input into

Workflakes at the beginning of its operation and is maintained as a set of assets in its

Blackboard.

At startup, Workflakes is given a configuration of service components that must be

instantiated. Workflakes selects some hosts in the server farm for this initial

deployment and sends them Worklets to execute bootstrapping code for the IM

components and configure the servers with all the necessary parameters (such as the

JDBC connection handle to the DBMS, the port numbers for connections by clients

and other IM servers, etc.). Notice that not only the configuration information, but

also the executable code of the IM server is deployed and loaded on demand, taking

advantage of a code-pulling feature of the Worklets agent platform. (This approach is

also followed in Software Dock [36]).

Depending on the types of the components, the deployment sub-process may change.

For example, a normal IM server can be instantiated and configured by a single

Worklet in one step. Web-based IM servers are notably more complex to startup and

configure, since that requires first of all the spawning of a new instance of the

application server, then the instantiation and parameterization of the residing Web

application with respect to the hosting application server, and finally its configuration

and activation as an IM component.

135

When a Worklet starts up an IM server, sensors are simultaneously activated to track

the server’s instantiation and initialization. When the instantiation is successful, the

process must dispatch other Worklets onto the load balancer of the server farm, which

accepts traffic for the IM service, to instruct it to route it to the right host address and

port for the new server. In the event of an unsuccessful initialization, instead, the

likely cause is inferred by the gauge layer of the dynamic adaptation platform and

reported back to the process (and also to a dashboard GUI implemented specifically

for this case study). Depending on the cause of that contingency and the stage of the

deployment process, Workflakes may react in different ways: it may decide to try to

bootstrap an IM server on the same host again, or on another available host, or it

could skip that portion of the configuration or even abort the whole process.

Following the initial bootstrapping phase, and after the intended service configuration

is in place, Workflakes takes a fully reactive role, while the probing and gauging

layers of the platform start monitoring and analyzing the dynamics of service usage.

Sensors and gauges are activated for a number of purposes: to capture the logging in

and out of clients onto the servers, count the number of users logged on at each

server, signal the raising of exceptions, monitor service latency and the number of

service requests queued by the Web applications, etc.

This case study is particularly concerned with load and responsiveness. Each IM

server has an associated load threshold, which is best expressed in terms of the

number of concurrently active clients, in relationship with the memory resources of

the host. When that threshold is passed, Workflakes reacts by trying to scale up the

service: it selects from the system model some unused machine available in the server

136

farm, and repeats the server bootstrapping process fragment on that machine,

providing a new server replica for handling the extra load, thus achieving enhanced

reliability and performance of the overall service.

For Web IM components, it was also possible to reach a finer level of adaptation,

exploiting the management capabilities built into the J2EE application server used for

the IM web applications, that is, BEA WebLogic server [163]. They are JMX

Management Beans, some of which could be integrated smoothly within both the

sensors and effectors layers of our platform. By taking advantage of those

Management Beans, Workflakes can decide to intervene also in response to variations

in the size of the queue of pending requests, and manipulate the details of the

threading model of the Web IM application in response. That optimizes the degree of

parallelism in processing client requests, and improves responsiveness.

The case study also experimented with service staging and evolution scenarios,

aiming at complete automation and minimal service disruption. It turns out that a

service evolution campaign can be supported by Workflakes with relatively minor

changes to the service bootstrapping process described above. The staging process

includes specific fragments that gradually withdraw from the load balancer outdated

server instances (thus disallowing new traffic to be assigned to them), and shut them

down when traffic is absent or minimal, while another process fragment coordinately

starts up other server instances with the new code release, registers them on the load

balancer, and thus makes them gradually available to users.

137

Case study results

As part of the work carried out on the IM case study, some results originating from

the experiments described above have been evaluated.

A set of quantitative results were derived from running and observing the adapted IM

system in lab conditions, using manual and automated traffic simulations. The

automated simulations used the same tools and traffic profiles that were employed by

the service developers for their stress and quality assurance testing, which simulated

traffic spikes interleaved with periods of steady request levels to the IM servers.

Following from the main goal stated for the experiment, the results refer primarily to

the levels of automated support provided to the maintenance and management

activities carried out onto the IM service on the field. Also some measures about the

development effort necessary to implement the case study were taken. The most

significant quantitative results are reported below:

• Substantially reduced effort for the deployment, configuration and evolution

(staging) of an IM service in the field. Current manual procedures (using Unix

shell scripts and assuming DBMS and application servers pre-installed in the

server farm) can take ½ to 1 person-day, with expert personnel present locally.

With KX and Workflakes, that is reduced to 1-2 minutes from a remote location.

• Reduced monitoring and maintenance effort necessary to ensure the health of the

running service. A system administrator was previously needed on-site 24/7/365,

with a secondary support team of experts available on call. KX with Workflakes

completely automates the monitoring of a set of major service parameters, as well

as the counter-measures to be taken for a set of well-known critical conditions.

138

Additionally, since the process of scaling the system is completely automated,

there is no risk of under- or over-provisioning, which represents another

improvement for the service management and administration.

• Reduced reaction times and improved availability and reliability: for example,

KX/Workflakes recognizes the passing of the IM load threshold in 1-2 seconds

and takes approximately 40 seconds to put in place an additional server replica.

Previously there was no direct overload detection: the sysadmin in charge was

supposed to check the number of concurrent users from the logs and to manually

start up an additional server when necessary. That is clearly error-prone and could

endanger service availability, in which case resource shortage would crash

overloaded servers.

• Manageable coding complexity: by exploiting the facilities provided by KX,

sensors, gauges and effectors are derived from generic code instrumentation

templates that are then customized with situational logic. This results in rather

compact code: 15 Java code lines for sensors on average, usually less than 100 for

effectors. The total code written for this specific case study on top of the generic

dynamic adaptation facilities provided by the KX/Workflakes infrastructure was

slightly above 2000 lines of Java and XML code.

As a conclusion that can be drawn from the quantitative measurements above,

employing KX and Workflakes in this case study has shown higher levels of

automation, flexibility and reliability with respect to the management of the target

service and its QoS, when compared with more traditional labor-intensive

management and administration practices. Those results, when put in the frame of the

139

autonomic capability model, contribute to raise the system management practices for

the IM service from level 2 (mostly manual management, supported by some

monitoring tools) to level 4 (fully automated management, taken care of by the

adaptation closed control loop).

Additional interesting lessons originating from this case study include the following

qualitative considerations:

• Impact on service development: The team that carried out the case study

positioned themselves past the end of the development phase of the project life

cycle and just prior to the deployment phase. No requirements were conveyed

back to the separate team in charge of furthering the development of the target IM

service. The software for the IM service was hence treated as a complete legacy,

although a legacy for which all the specifications, software artifacts and

accumulated project knowledge happened to be available, and could be shared

between the case study team and the service development team. Notice that also a

different kind of legacy applies in the case study: the application server and the

load balancer are commercial software products (WebLogic Server by BEA [163]

and Network Dispatcher by IBM [164], respectively), which however provide

sufficient APIs for carrying out their monitoring and actuation. Even within those

limitations, it was possible to satisfy all the requirements of the case study.

• Impact of the behavioral model: the amount of effort to analyze the model of the

target system and its behavior for dynamic adaptation purposes constituted by

itself about one third of the overall effort spent for the case study (46 out of about

140 person / days), that is, to develop, test and evaluate the dynamic adaptation

140

solution for the IM service according to requirements and on top of the KX

platform. Furthermore, more than 10% of the software that was written was

intended to capture architectural information, relationships and inferences with

respect to the target system, and represent them to KX and Workflakes as

proprietary models that could inform the work of the platform. That constitutes

evidence of the strong dependency of dynamic adaptation on the ability to

capture, describe and expose in an abstract and machine-readable way knowledge

about a number of aspects relevant to the target architecture, and provides

empirical support and motivation to explore integration of dynamic adaptation

tools and platforms with formal models.

• Integrated automated management: here is where the benefit of a full-fledged

process engine becomes most evident. Traditional application management is

concerned with reporting warnings, alarms and other information to some

knowledgeable human operator who can recognize situations as they occur, and

take actions as needed. The amount of guidance and automation on the part of the

management platform then may be very limited. Our approach offers instead a

high level of guidance, coordination and automation to enforce what is a complex

but many times largely repeatable and codifiable process.

5.2 AI2TV

Background

AI2TV stands for “Adaptive Internet Interactive Team Video”. AI2TV is a project that

aims at supporting multimedia-assisted distributed team work. It includes a subsystem

141

devoted to the provision over wide-area networks of multimedia content relevant to

the work carried out by the team, such as audio/video recordings of group discussions

and decisions, informational and educational events, etc. The application domain of

election for AI2TV is long-distance education: the focus is on enabling the

remotization of attendance and review of class lectures, group study, and

collaborative team assignments, such as software development projects. AI2TV

differs from many existing infrastructures for providing educational content in a

networked context because of its explicit focus on supporting the team work aspects

of on-line education.

A number of speculative, design and technological challenges underlie the main

AI2TV ideas. The issues that are most relevant to the work presented in this document

lie mainly in between multimedia and Computer-Supported Collaborative Work

(CSCW), in particular how dynamic software adaptation can aid multimedia-enabled

computerized CSCW tools to meet their goal of efficiently and effectively supporting

collaborative work practices.

One of the most compelling requirements for AI2TV is the support for the

synchronized watching of a streamed video by all members of a widely distributed

team, independently of their different equipment and networking capabilities,

including support for video operations like fast forward, rewind, seek, etc.

Imagine a scenario in which the team decides to review together a portion of a

recorded lecture, in order to solve some difficulty in their project assignment or to

clarify some notion. Given that team members can be dispersed over the Internet, and

may enjoy very diverse connectivity, ranging for example from 28.8k modem, to

142

DSL, to cable, to T1 lines, the multimedia content they must use for their review

session is to be delivered over heterogeneous Internet links to heterogeneous

platforms. Moreover, in such a setup the communication and computing resources

available to each user may widely and quickly vary in the course of the team work

session. In contrast with those potential difficulties, the collaboration can be effective

only in case the fruition of the streamed video clip remains well-synchronized, so that

users, who are enabled by their clients to discuss the material among each other as

they see it, have a natural group experience (like they were co-located in class, or

watching a tape together sitting in a study room) and do not incur in

misunderstandings, waste of time, or other serious inconveniences during their review

session.

This kind of collaborative video sharing poses a twofold problem: first of all, it is

mandatory to keep all users synchronized with respect to the content they are

supposed to see at any moment during play time; furthermore, it is important to

provide each individual user with a viewing experience that is adequate with respect

to the user's available resources, which may also vary during the course of the video.

The solution proposed is based on the one hand on offering multimedia content in

multiple versions, with different levels of semantic compression, achieved by

employing a semantic summarization package separately developed at Columbia

University [184], and on the other hand on using the process / workflow technology

made available by Workflakes to dynamically adapt content provision.

Dynamic adaptation in this case is directed at modifying a combination of server and

client configurations, data fetching and buffering strategies and video playing

143

schemes, to accommodate and harmonize varying latencies, throughputs, client

processing power, and server work loads. All of that – as will become evident as the

implementation of the case study is described - must be completed by Workflakes

within narrow time boundaries (in the order of seconds or less), given the soft real-

time nature of the application and the kind of adaptation that must be effected.

The one described above is the first possible application of process-based dynamic

adaptation in the AI2TV system is termed the short-term or client synchronization

workflow, to distinguish it from the other possible applications, which are introduced

below.

Another context in AI2TV, in which process / workflow technology plays a

significant part is the organization of the work of the team as well as its individual

members, in accord with an agenda containing a schedule of group events (e.g.,

virtual study “meetings”) and work deadlines. In AI2TV, a workflow is used to model

and guide the activities of the distributed team along that planned schedule. The

typology of that workflow is in general that of a classic human-oriented process,

whose stakeholders are persons and whose goal is to facilitate and guide the

collaboration among those persons; furthermore, the workflow is likely to span its

activities across a relatively long term, i.e., in terms of weeks, days, or hours in the

most demanding cases. That workflow is therefore called the long-term scheduling

workflow.

Given those characteristics, that kind of workflow is seemingly not concerned with

any dynamic software adaptation issues. However, there are peculiarities intrinsic to

the presence and use of multimedia content in the workflow that demand for the

144

introduction of dynamic adaptation aspects, which become intertwined with the

coordination of team activities.

Multimedia content must be treated by the workflow as both a new type of artifact

and an additional kind of resource, albeit an expensive one, whose use must be

carefully organized and managed. One thing this workflow must do is to plan and

orchestrate the distribution of such multimedia artifacts to each individual team

member in a timely fashion. Ideally, all needed artifacts would be entirely transferred

to all clients in advance, before a planned event begins. That would avoid the need for

streaming any information on the fly, and would thus largely circumvent the

problems that require the intervention of the short-term synchronization workflow, at

least for planned-ahead joint work events (for virtual meetings that are set up and

initiated with no or little advance notice, the client synchronization workflow remains

completely relevant).

In the real world, the typical situation is likely to be somewhere in between the two

extremes above. Given that, and also in the view of the high variability of the factors

that may influence or hinder the ability to make available in advance the necessary

artifacts, such as connectivity, servers, storage space in the clients, CPU load on

clients, and more, there is a need for AI2TV to adapt on the fly even in the long-term

context. That way it becomes possible to overcome connectivity and capability

idiosyncrasies and maximize the amount of data that can be buffered in advance and

that is hence immediately available to clients at the beginning of a group session.

That can be resolved with a combination of content pre-fetching and caching

techniques that are orchestrated via a pre-fetching workflow, which kicks in as part of

145

the long-term scheduling workflow. The pre-fetching workflow must also graciously

turn control over to the synchronization workflow whenever a group session begins,

for keeping in check and adapting the synchronized delivery and presentation of the

material across clients.

Besides the long- and the short- term, there is also a medium-term option for

dynamically adapting the provision of multimedia content in AI2TV. That can occur

whenever, during the synchronized fruition of some multimedia stream, the group

decides to pause or interrupt the viewing. That opens a window of opportunity for

loading additional material in clients’ buffers, taking advantage of the period in which

network connections to the video server remain idle. The logic of this opportunistic

pre-fetching workflow is akin to that of the long-term pre-fetching workflow, but it

must operate within a time frame that is closer to that of the client synchronization

workflow.

Case study description

The implementation of the AI2TV case study that is reported here is concerned only

with the short-term client synchronization aspects. The other dynamic adaptation

options related to content pre-fetching in the medium and long term, and how they

relate to and interact with the short-term workflow, are the subjects of future work.

The experimental work described here has focused on client synchronization since,

because of the soft real-time constraints inherent to adaptive multimedia provisioning,

it represents a particularly interesting and demanding field of application for dynamic

software adaptation in general, and for its process-based orchestration in particular, as

previously discussed in Section 3.3.

146

Notice also that in this particular case study Workflakes is employed on its own,

without the other elements of the KX platform. The design of the control loop

superimposed onto the AI2TV system still follows the conceptual architecture for

externalized dynamic adaptation of . However, some simplifications have

been used, for expediency of design: referring to the design schematic of the AI2TV

system shown in Figure 15, customized sensors in the clients communicate with

handcrafted gauges that are embedded together with the coordination engine. That

simplification allows to minimize the communication latency between the various

elements of the dynamic adaptation platform, which in turn allows to precisely

determine the amount of time spent in the Workflakes controller, and its contribution

to the timeliness of the adaptations (which is one of the intended results of the

experiments with AI2TV).

Figure 3

Besides the controller and the underlying event-based middleware (i.e., Siena [156])

used for distributed communications within the control loop, Figure 15 shows the

video server and the AI2TV clients.

147

Figure 15: The AI2TV System.

The video server makes available the educational video content to AI2TV clients.

Such content has the form of a hierarchy of video versions produced with the

semantic summarization tool mentioned previously. That tool operates on MPEG

format videos and outputs sequences of JPG frames. Its semantic compression

algorithm profiles video frames within a sliding time window and selects key frames

that have the most semantic information. By increasing the size of the window, a key

frame will represent a larger time slice, which means that a larger window size will

produce less key frames as compared to a smaller window size setting, effectively

increasing the level of semantic compression. By running the tool multiple times with

settings for different compression levels, several sets of frames are produced, which

148

are indexed by a frame index file. The task of the video server is to provide to clients

download access to the frames and the index file over HTTP.

Notice that the various quality level produced that way are characterized by their

different frame rates. Notice also that the semantic compression algorithm produces

effectively a random distribution of key frames, hence the video produced by the

package plays back at a variable frame rate.

Clients participating in the same group are the subjects of the short-term adaptation.

A group is limited in number, since user teams are assumed to be composed of 2-5

users at least, and 10-12 at most. The task of each client is to acquire video frames,

display them at the correct time, and provide a set of basic video functions. From a

functional design perspective, the client is composed of three major modules: a time

controller, a video buffer and manager for fetching and storing downloaded frames,

and a video display.

The time controller's task is to ensure that a common video clock is maintained across

clients. It relies on NTP [185] to synchronize the system's software clock therefore

ensuring a common time base for the group, which each client can reference. Using

this foundation, the task of each client of displaying the client's needed frame at the

correct time is simplified. Since all the clients refer to the same time base, then at any

time all the clients are showing a semantically equivalent frame, unless some clients

do not have it available at any quality level.

The video buffer and manager constitute a downloading daemon that continuously

downloads frames at a certain quality level. It keeps a hash of the available frames

and a count of the current reserve frames (frames buffered) for each quality level. The

149

buffer manager also includes an actuation interface hook that enables the controller to

adjust the current downloading quality level.

The video display renders the frames into a window and provides a user interface

with controls for play, pause, goto, and stop. When any participant initiates one of

those actions, all the other group members receive the same command as a time-

stamped event. Referring to the common time base, all the video players can take

action in a synchronized way so that results are consistent. Furthermore, the video

display knows which frame to render at any time, by using the current video time and

the current display quality level to retrieve into the frame index the representative

frame. Before trying to render that frame, the video display asks the video buffer

manager if it is available. The video display also includes an actuation interface that

enables the autonomic controller, to adjust the current display quality level.

Given how AI2TV clients are developed, a client at each given moment in time can be

in two states with respect to synchronization,: it is either in sync, i.e., displaying the

correct frame at some compression level with respect to the playing time of the video

clip, or is lagging behind, i.e., missing in its buffer the correct frame that it should be

displaying at that moment.

Clients are also equipped with sensors that have been developed specifically for this

case study. Those sensors report data such as video display quality level, the buffer

quality level, the buffer reserve frames, the currently displayed frame and the current

bandwidth. A gauge samples periodically (e.g., every second) that information from

each client, and stores it into buckets, similarly to [186]: a full bucket is a complete

150

sample that represents a snapshot that reports the state of the whole client group at

some moment in time; that sample is then transferred to the Workflakes controller.

Workflakes uses each incoming sample as the basis for decision making: the data in

the sample is evaluated by a set of helper functions that compute whether the users,

albeit at different levels of semantic compression, are viewing equivalent

informational content, in sync with the playing time of the video clip. They also

estimate whether some clients, although in sync, may risk to lag behind in the future,

given the current available resources and the current quality level, or – at the contrary

- whether they have abundant resources that could be better exploited for enhancing

the viewing experience. On that basis, decisions are taken about which clients must

be adapted and in what way, and triggers for the adaptation process are produced.

Therefore, in case the multimedia clients of some users in the group are at risk of

“lagging behind” with respect to others, their buffer managers are instructed by the

synchronization workflow to downgrade on the fly their content fetching to a level

that is more compressed, and to start displaying from a certain frame within that

level; that implies that in the most critical cases certain informational content may

also be skipped. This trade-off of quality for timeliness is acceptable, given that, in

the context and for the purposes of the AI2TV system, synchronization is arguably a

more important quality factor for the user experience than content presentation, or

even content integrity. Conversely, whenever for the helper functions a client results

rather lightly loaded and able to keep pace without problems, the synchronization

workflow may instruct it to upgrade its content fetching level and/or display level to a

higher-quality, thus enhancing the user experience also with respect to content merits.

151

All of the above is repeated every time a full sample is produced by the gauges,

therefore needs to be computed, coordinated and effected in a fraction of that

sampling time. For that reason, the synchronization process cannot be over-

complicated, otherwise the time spent to execute the coordination process alone could

become excessive. The key of this case study from the point of view of the process

enactment facilities that fulfill the coordination role is to be able to orchestrate the

necessary adaptation as efficiently as possible, and to repeat the same adaptation

process frequently, rather than being able to represent and enact a very involved and

sophisticated coordination process. An implied challenge is to produce with a simple

process the rather complex effect of synchronizing the group of dispersed AI2TV

clients, while at the same time optimizing the viewing experience for each of them.

The process of this case study is shown in Figure 16 as a Little-JIL diagram.

152

Figure 16: The AI2TV process in Little-JIL.

The task decomposition hierarchy employed for that dynamic adaptation is

structurally simple. One reason is that it does not need to account for particular

contingencies, either internal or external; any failure in adapting some client –

although may result in temporary degradation of the behavior of the group - can be

recovered the next time the process is executed. Thus, the process does not need to

provide specific flows for handling exceptional conditions or implementing

compensations. One subtlety is how the parallel enactment of multiple instances of

the EvaluateClient and AdaptClient tasks is determined dynamically, depending on

the state and number of clients in the group, as signified by the clients+ label on the

transition arcs. It is noticeable how the native semantics of the Little-JIL language

153

supports that aspect in a very simple way, by allowing to bind the arc connecting a

parallel step with some sub-step to a resource collection (called clients in this case,

and representing the group of AI2TV clients). The cardinality of that resource

collection is evaluated on the fly when expanding the parallel step, and determines the

number of instances of the sub-step that are enacted.

Case study results

The results of the experiments described above have been evaluated as part of the

work carried out on the AI2TV case study. The collection and evaluation of the results

of the AI2TV case study is aimed at verifying two aspects related to the client

synchronization workflow:

• that process-based coordination of dynamic adaptation can be a suitable approach

for target systems that have soft real-time constraints, even when those constraints

are demanding as those of distributed multimedia systems;

• that when the coordination is correctly enacted within those time boundaries, an

externalized dynamic adaptation platform superimposed on a soft real-time target

is in fact able to enforce the desired behavior of that target system and

significantly improve its quality of service.

The nature of the dynamic adaptation application in this case study enabled the

collection and analysis of a wealth of quantitative data, measuring those two aspects

during a number of AI2TV trail runs. The trail runs involved teams having from 1 to

5, and as many as 10 participating clients, with wide variations in networking

resources assigned to the link between each client and the video server.

154

With respect to the first aspect, i.e., making sure that the client synchronization

workflow performs within the time boundaries required, that is, with a turn-around

time that is significantly less than the sample time of the gauge that feeds the

workflow, timestamps have been taken on the beginning and end of all the tasks in

the workflow. As a result, the diagram in shows the average total execution

time for the workflow, in trail runs involving 1, 2, 3, 4, 5, and 10 clients in the same

group. The execution time displayed includes not only the time for the enactment of

the process within the Workflakes engine, but also the time spent within the

computational helper functions employed for decision-making, and invoked at

different junctures in the orchestration process.

Figure 17

Figure 17: AI2TV - execution time of the adaptation process.

The data suggests that the execution time of the client synchronization workflow

gauge occurs quickly enough to correct any clients that may be drifting out of sync in

a prompt manner, and is sufficiently short to accommodate a sampling frequency of 1

second or less. That frequency seems adequate for a fine-grained control of group

synchronization, at least in an educational context, in which images tend to have a

155

relatively low change rate. Therefore, it is possible to state that the experimental data

is complaint with the timeliness requirements of the AI2TV group video viewing.

Verifying whether dynamic adaptation improves significantly the quality of the target

system was a more complicated affair, since the elaboration of an appropriate

reference model of the QoS parameters relevant for the case study, with the

corresponding metrics, was needed.

In [74], a survey and taxonomy of approaches to adapting Internet-wide video

multicast is proposed. Although AI2TV currently does not employ network

multicasting protocols to deliver content to a team (it resorts instead to what is

defined in [74] as multiple-unicast), the classification of approaches proposed in that

survey is still helpful to characterize the kind of dynamic adaptation exerted in the

AITV case study. Such classification is layered adaptation, since the case study

couples multi-rate video delivery with end-to-end adaptation. The multiple levels of

semantic compression of the content source in AI2TV can be seen as a form of

cumulative layering [75], also known as scalable coding [76]: those approaches to

compression provide multiple versions of content, codified with different encodings

of incremental quality levels (in our case with different frame rates), among which

clients can choose. Moreover, the adaptation requires the monitoring and effecting of

only the end points of the communication, without influencing in any way the

intermediate nodes of the transport network and their behavior; finally, the adaptation

mechanism according to which AI2TV clients move up and down the hierarchy of

compression levels can be characterized as receiver-driven since it depends from the

monitoring of the clients’ state.

156

Experimentation on adaptive video multicast is still in its infancy; moreover, layered

adaptation schemes in particular have been rarely used to date (although they look

promising in the near term, as research on scalable coding is becoming mature). Even

more importantly, the principal quality factors to be evaluated are not consistent with

the purposed of the AI2TV case study: while the major concern of multicasting is

achieving optimal viewing experience for the users, coupled with fairness in the data

delivery to all of the various transmission end points, in AI2TV the individual viewing

experience must be reconciled instead with inter-client synchronization.

Because of the lack of standard evaluation procedures and data sets, and the lack of

consistency in the quality factors to be measured, while it is possible to evaluate the

effects of Workflakes in the AI2TV case study with respect to a situation where no

dynamic adaptation is applied, it would be hard to compare the benefits that can be

observed in that case study with those achieved in equivalent experiments that use

other approaches.

The evaluation of the AI2TV case study, considers two different aspects: synchrony

and Quality of Service (specifically, frame rate, because of the nature of the

compression scheme adopted). That evaluation is carried out in a comparative way,

with respect to a situation against which the performance of the dynamic adaptation

approach can be consistently compared. To that end, a baseline client is used, whose

quality level is set at the beginning of the video and not changed thereafter. To define

the baseline client, a parameter that describes the average bandwidth per level is

computed, by summing the total size in bytes of all frames produced at a certain

compression level and dividing by the total video time. This value provides the

157

bandwidth needed on average for the buffer manager to download the next frame on

time at that level. We provide the baseline client with the needed bandwidth for its

chosen level by using a bandwidth throttling tool [187] that adjusts the bandwidth of

the link to the video server. Notice that using the average as the baseline does not

account for changes in the video frame rate and fluctuations in network bandwidth,

which are situations in which adaptive control is supposed to make a difference.

When carrying out the evaluation, each controller-assisted client is assigned an initial

level in the compression hierarchy and the same bandwidth as the baseline client for

that hierarchy level. At the end of each experiment, we record any differences, with

respect to synchrony and frame rate, between the adaptation of the clients' behavior

on the part of Workflakes, and the behavior of the baseline client.

To evaluate synchrony, clients log at periodic time intervals the frame currently being

displayed. This procedure effectively takes a snapshot of the system. This evaluation

proceeds by checking whether the frame being displayed at a certain time corresponds

to one of the valid frames at that time, on any arbitrary level according to the layered

compression scheme. Arbitrary levels are allowed, because the semantic compression

algorithm ensures that all frames at different levels for a certain time will contain the

same semantic information if the semantic windows overlap. The system is then

scored, by summing the number of clients not showing an acceptable frame and

normalizing over the total number of clients in the group: a score of 0 indicates a

synchronized group.

Our experiments for the evaluation of synchronization initially involved groups of

clients that were set to begin playing a test video at different levels in the

158

compression hierarchy, and were assigned the corresponding baseline bandwidth. In

those experiments, the results show a total score of 0 for all trials, with as well as

without the supervision of Workflakes. Also, no frames were missed. This result

demonstrates that the chosen baseline combinations of compression levels and

throttled bandwidths do not push the clients beyond their bandwidth resource

capacity, notwithstanding the variations in the frame rate and/or occasional

fluctuations in the actual bandwidth of the clients,

We also ran a different set of experiments related to synchrony, in which the clients in

the group were assigned more casually selected levels of starting bandwidths. This

casual selection is representative of some real world situations, in which users must

choose a desired frame rate to receive multimedia streams (typically, about the

nominal bandwidth offered by their service provider) which may however differ

considerably from the bandwidth actually available on that connection. We ran this

set of experiments first without the aid of the controller and then with it. In the former

case, clients with insufficient bandwidth were of course stuck at the compression

level originally selected, and thus missed an average of 63% of the needed frames. In

the latter case, the same clients only missed 35% of the needed frames, because of the

intervention by Workflakes, which tried to re-assign them to more adequate

compression levels for their actual bandwidth. These results provide evidence of the

benefits of the adaptive scheme implemented by the Workflakes controller. Figure 18

shows the statistics of the missed frames for all the experiments: in total 26 trial runs

were carried out, but only some of them reported non-0 values for the count of missed

frames.

159

Missed Frames (All Trials)

-5

0

5

10

15

20

25

30

35

40

no controller controller

M
is

se
d

Fr
am

es
 C

ou
nt

Figure 18: AI2TV - missed frames count.

The other major goal of dynamic adaptation in the AI2TV case study is to provide

each client with an enhanced viewing experience, via adjustments to the compression

level and hence the video frame rate. To attain a quantitative measure of the quality of

service provided by a client assisted by Workflakes, a scoring system relative to the

baseline client's quality level is used, with weighted scores for each level above or

below the baseline quality level. The weighted score is calculated as the ratio of the

frame rate of the two levels. For example, if a client is enabled via dynamic adapation

to play at one level higher then the baseline, and the baseline plays at an average N

frame per second (fps) while the higher level plays at 2*N fps, the given score for

playing at the higher level is 2. Theoretically, the baseline client should receive a

score of 1. The weights are thus calculated as a proportion between the average frame

rates of the various quality levels, which makes the scoring system sensitive to the

relative quality difference between layers in the compression scheme. Figure 19

160

shows the distribution of bonuses and penalties in the scoring system adopted:

consider that the layered compression scheme employed in the case study has five

Figure 19

layers.

: AI2TV - score distribution.

 for the evaluation of quality of service using the

Score Distributions

-15

-10

-5

0

5

10

15

-1 0 1 2 3 4 5

Quality Level

Sc
or

e

The results of the trial runs used

scoring system explained above show that the baseline clients scored an average

group score of 1 in the various trial runs (as expected) while the clients adapted by

Workflakes scored a group score of 1.25. The one-tailed t-score of this difference is

3.01 which is significant for an alpha value of .005 (N=17). That demonstrates with

confidence that the dynamic adaptation orchestrated by the Workflakes controller is

able to achieve a statistically significant positive difference in the quality of services.

Note that the t-score does not measure the degree of the positive difference achieved

by the autonomic controller. To measure the degree of benefit provided by

161

Workflakes, the proportion of additional frames that each adapted client is able to

enjoy is measured. Overall, those clients received 20.4% more frames then the clients

operating at a baseline rate (with a standard variation of 9.7). The benefits brought

about by the introduction dynamic adaptation are visually evident in Figure 20, which

shows the statistics of the weighted score for the baseline experiment

When considering all the test runs, that is, also those in which the allot

s.

was chosen casually, the difference of the weighted score i

Figure 20: AI2TV - weighted score differences for baseline trial runs.

0

0.5

1

1.5

2

2.5

3

no controller controller

W
ei

gh
te

d
Sc

or
e

Per Trial Weighted Score (Baseline Start Level)

ted bandwidth

n favor of Workflakes-

adapted clients becomes even more significant, as evident from the bar graph of

Figure 21. In particular, it is noticeable how the score of trial runs with no controller

162

in place d

which bandwidth is chosen casually are also provided

rops significantly, while the score of controllers assisted trial runs decreases

only a little, and remains well above 1.

For completeness, the statistics of the

Figure 21: AI2TV - comparison of average weighted scores.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

no controller controller no controller controller

baseline start all trials

W
ei

gh
te

d
Sc

or
e

Comparison of Weighted Scores

weighted scores for the various trial runs in

 in Figure 22.

163

Per Trial Goodness Score (Casual Start Level)

-5

-4

-3

-2

-1

0

1

2

3

4

no controller controller

G
oo

dn
es

s
Sc

or
e

Figure 22: AI2TV - weighted score differences for non-baseline trial runs.

The act of running the client at compression levels that require more bandwidth than

the baseline level puts of course the client at risk of missing more frames, because the

controller is trying to push the client to a better, but more resource-demanding, level.

To measure whether the Workflakes-adapted clients are exposed to a higher risk of

missing frames, the number of missed frames during a video session in those

conditions was also counted. From that assessment of the risk of enhancing the frame

rate of the clients, there was only one instance found, in which a Workflakes-adapted

client missed two consecutive frames. Upon closer inspection, the time region during

this event showed that the video demanded a higher frame rate while the network

bandwidth assigned to that client was relatively low. The client was able to

consistently maintain a high video quality level without skipping frames after that

event.

164

The data reported from these experiments indicates how the Workflakes controller

makes a significant positive difference in aiding the client to achieve a higher-quality

viewing experience (all the while keeping clients in the group in sync), in two

respects: less missed frames when bandwidth conditions are dire, and better video

quality (i.e., frame rate) with respect to the available resources of each client. Note

how the count of missed frame is kept separate from the weighted score of quality

levels, to discriminate between levels of concern, though they both indicate a

characteristic of quality of service.

An important qualitative consideration that supplements and in some way completes

the above mentioned quantitative findings derives from an observation about the

structural simplicity of the dynamic adaptation process employed for the short-term

synchronization workflow. A process that (in the chosen process formalism) can be

expressed in a rather straightforward and compact way is able to orchestrate

effectively significantly complex effects on an ensemble of distributed and

independent software components, such as those required to solve the problem of

synchronized multimedia delivery to multiple recipients.

In the end, it may be interesting to compare and contrast the use and results of

Workflakes in the AI2TV case study with works that presents similarities.

QFabric [38] describes an internalized system for end-to-end management and

adaptation of the QoS in soft real-time systems like multimedia conferencing.

QFabric integrates resource managers in the operating system kernel and adapters in

the application, which can therefore collaborate towards the same QoS goals. QFabric

is based on the exchange of publish/subscribe events among kernel as well as

165

application-level entities involved in its target system; it uses the Event-Action

paradigm to describe its adaptations, as reactions to specific monitoring or steering

events. The work focuses mainly on the description of the abovementioned

collaborative mechanisms and on how the infrastructure makes them available; no

specific attention is devoted to how one could specify and automate on top of those

mechanisms some policies that would guide the adaptation across the whole of the

target system. In that light, QFabric and Workflakes could be seen as complementary,

with Workflakes providing the means for policy specification and enactment through

the use of process technology, and thus fulfilling the decision and coordination role of

dynamic adaptation, while QFabric could provide the infrastructure to accommodate

the monitoring, diagnostics and actuation roles.

This case study can also be compared with an earlier implementation of AI2TV,

which is described in [188]. In that version, a 3-D Collaborative Virtual Environment

(CVE) called CHIME [189] was employed to support a variety of interactions of the

study team, with the optional video display embedded in the wall of a CVE “room”.

The same semantic compression capability was used. Video synchronization data was

piggybacked on top of the UDP peer-to-peer communication that was used at the

same time for CVE updates, such as tracking avatar movements or other scene

changes, in the style of multi-player 3D gaming. In that implementation, the video

synchronization did not work very well, due to the heavy burden caused by the CVE

on client resources; also, in that framework video quality optimization was not

addressed. The new implementation of the case study presented here can run

alongside the CVE in a separate window, and, thanks to the dynamic adaptation

166

superimposed by using Workflakes, can enhance both the group synchronization and

the quality of service aspects.

5.3 GeoWorlds

GeoWorlds [168] is a strongly decentralized and componentized Internet-scale

Information System, developed at the Information Science Institute (ISI) of the

University of Southern California, which provides Geophysical Information

integrated with Digital Library features. It is in experimental use for intelligence

analysis at US Pacific Command (PACOM). GeoWorlds is built out of a distributed

set of services glued together by Jini [165], which are employed to run complex

information gathering jobs, expressed as GeoWorlds scripts.

Forms of dynamic adaptation applied to GeoWorlds have varied from service

parameter modification, to component repair, to architecture-level reconfiguration,

such as service migration. The latter is discussed in more detail in the remainder of

this Section.

A number of different GeoWorlds execution scripts rely on computationally-intensive

backend services, one of which is a noun phraser that analyzes incoming news articles

and extract nouns for mapping onto geographical locations. That component is very

commonly and heavily used by most GeoWorlds scripts. When the computational

load due to noun extraction requests can potentially become excessive on a certain

host, relocation is desirable to maximize performance or even avoid crashes.

Therefore, in this case study, dynamic adaptations that would relocate the noun

phraser, and more in general any GeoWorlds components were put in place, taking

also advantage of the inherent re-locability of Jini services. Sensors measuring the

167

overall computational load of hosts were developed, together with an architectural

description of GeoWorlds, which specifies constraints for host machines and services

residing upon those hosts. During the execution of the various services, if the load

exceeded a predetermined threshold for a predefined period of time, gauges in the

diagnostic layer of KX would detect and report it as a violation of those constraints.

That would trigger a repair that entails moving the services on the overloaded host to

a different Jini-enabled host that can accept the extra load.

Additional logic was also developed, to detect and avoid “oscillation” situations, in

which multiple re-locations would occur in a short time span, and would cause

services to move back and forth between two hosts. In such a case one of two meta-

repairs could be taken: either the invalidation of the re-location repair strategy

altogether, or the tuning of the overload threshold and/or period parameters of the

gauges in charge to detect the overload condition. Both of those remedies represent

cases of meta-adaptation, in which the dynamic adaptation platform (i.e., KX) itself is

adapted, to better support the requirements presented by the target system.

One particularly interesting trait in this case study was that – in part building upon the

experience gathered the IM case study of Section 5.1 – the GeoWorlds models were

formally expressed with Architectural Description Languages (ADLs), and integrated

within the dynamic adaptation loop, instead of using a proprietary format. The ABLE

tool set [54] by CMU provided a formal model of GeoWorlds – including the afore

mentioned constraints - to KX, in particular to its analysis and decision layers. The

knowledge captured by ABLE was explicated as a set of descriptions in the Acme

ADL [166] and maintained with the AcmeStudio editing tool [167]. Moreover, using

168

the AcmeStudio’s dynamic visualization tools included in ABLE, it was possible to

follow variations in the load and service state, and watch the feedback loop in action,

in concert with the architectural model.

That juxtaposition of architectural representations and the corresponding

implementation-level elements the GeoWorlds case study showed the potential of

being able to clearly and rigorously express, reason about, validate and audit the

characteristics and the effects of the modifications caused by dynamic adaptation. A

difficulty that was only partially resolved in the case study was a degree of

disconnection between the architectural model of the target system and its

implementation counterpart in the run-time environment. Elements in the

architectural model were not originally meant to be associated to and actually identify

with deployed target system components. As a consequence, the need for precise

bindings (such as those described for instance in [61]) between components and

connectors in the architectural model and the runtime entities that reify the

architecture in the field was observed. Such bindings can greatly simplify the

integration of ADL-based tools at all layers of our dynamic adaptation infrastructure.

5.4 Web services marketplace

The IM case study described in Section 5.1 was developed in part within the context

of a collaborative international project funded by EURESCOM

(http://www.eurescom.de). The case study described in this Section was also carried

out in the same project, by different project partners. Its description in full detail is

available elsewhere [67], and its complete evaluation results are not available in this

http://www.eurescom.de/

169

document, since they represent confidential information belonging to the

organizations that carried out the experiment.

The subject of this case study is a prototype of an adaptive electronic marketplace for

the selection, negotiation and composition of Web Services applications. Said

marketplace interfaces with a number of service components implemented and made

available by multiple providers as Web Services, and offers to assemble complex

services starting from scripted service chains.

The dynamic adaptation regards as its target system the core of the marketplace,

which operates as a mediator and a composer, but the platform also monitors the

basic functioning parameters of participating Web Services (such as availability,

responsiveness, transaction completion ratio, etc.), analyzes their accumulated

performance, and uses this information to adapt the behavior of the mediator in the

marketplace The goal of the process-based coordinator in this case study is threefold:

• to automate the deployment of the core components of the marketplace;

• to intervene in the case of a failure of those components, and re-start them, in

order to ensure the continuous availability of the marketplace;

• to modify on the fly the parameters informing the selection component of the

marketplace, based on diagnostic information collected from the performance

history of the external Web Service known to the marketplace.

The third aspect is of particular interest because it differs from the others, which are

related to typical concerns of dynamic software adaptation, such as automated

configuration and fault recovery; it borders instead on the issue of supporting

dynamic software composition (see Section 2.4). By putting in place adaptive

170

mechanisms that can be used in selecting service providers for composing the service

chains, it effectively provides the mediator component with the capability of tuning

its match-making and selection of Web Services that take part in a given composed

service. The final goal this kind of adaptation responds to (and the rationale guiding

this case study) is to ensure compliance with requirements that may be set for the

composed services, thus enhancing customers’ satisfaction.

171

6 Evaluation

It may be useful at this stage to recall the two main working hypotheses from which

this research described herein derives, as originally stated in Section 1:

H1) It is feasible and effective to employ an externalized infrastructure to retrofit

pre-existing software systems and components thereof with dynamic

adaptation features.

H2) Decentralized process technology provides a convenient and effective means

to exert sophisticated forms of coordination and control over complex

distributed software applications, such as those required by dynamic

adaptation.

The first hypothesis has a lot to do with the general concept as well as the

implementation of an externalized dynamic adaptation platform at large. This

research, which concentrates on the coordination role of such a platform, can of

course validate that hypothesis to the extent in which the coordination role is central

to externalized dynamic adaptation, and inextricably tied to its other roles. On the

other hand, having in place a dynamic adaptation loop, like KX, in its entirety

evidently represents a prerequisite for experimenting with a process-based

coordinator like Workflakes. Therefore, any positive or negative experience with the

coordinator is immediately reflected upon the success or shortcomings of the entire

platform to exert dynamic adaptation, and vice versa.

Some effectiveness and benefits indicators that can be applied to the evaluation of the

hypothesis H1 can be broadly categorized as follows:

172

• Impact on the management practice related to the target system (for example

in terms of effort and costs).

• Impact on the run-time behavior, performance and quality factors of the target

system.

• Impact on the development of the target system (or, in the case of legacy

target systems, feasibility of the approach without any impact).

• Adaptation reach and granularity that can be achieved.

The aspects listed above will be considered in Section 6.2, for framing and

interpreting the results of the evaluation of Workflakes with respect to working

hypothesis H1.

Any benefits related to the aspects above could in principle be measured relatively,

that is, against those provided by alternatives approaches to dynamic adaptation, in

particular, in this case, internalized approaches. However, there are several serious

difficulties to accomplish that kind of comparison. One difficulty descends directly

from the externalized stance taken by this research: externalized dynamic adaptation

is concerned principally with retro-fitting legacy or other third-party software systems

with adaptive capabilities. As a consequence, the legacy software that was selected

for those experiments did not exhibit any intrinsic adaptive features.

There are also more fundamental difficulties that hinder relative evaluation. First of

all, the lack of an agreement upon baselines for the evaluation of adaptive or

autonomic capabilities in software systems: given the relative novelty of the field,

there is no accepted or even proposed base experiment (or set thereof), upon which to

compare different approaches and implementations. That is in turn a consequence of

173

the wide scope and reach of studies and results in the field, which aim at improving

software systems in many different, heterogeneous quality areas.

For all of those reasons, it is more feasible to measure the benefits brought about by

applying dynamic adaptation in absolute terms, that is, against a situation in which no

adaptation whatsoever is exerted upon the same legacy system. That is particularly

true for externalized approaches, which can be easily turned off or plugged in at will,

and is the general approach taken in this work. In Section 6.3, the opportunity of

overcoming the lack of a proper evaluation framework for initiatives that deal with

the problem spectrum of dynamic software adaptation and, in general, autonomic

computing is discussed.

The evaluation related to the second hypothesis looks at how well process technology

is able in the cases at hand to describe, support and automate software coordination

plans for dynamic adaptation. Also that evaluation is carried out here in absolute

terms, for reasons similar to those explained for hypothesis H1: in particular, there is

no sufficient accumulated experience in the dynamic adaptation field, to establish

consistent benchmarks or canonical experiments against which multiple alternative

approaches (in this case, coordination paradigms) can be compared.

Among the indications of the effectiveness of a process-oriented approach to

coordination of dynamic adaptation there can be aspects such as:

• The effort needed to specify the coordination policies of software dynamic

adaptation in terms of a process / workflow.

• The level of sophistication and complexity of those coordination policies that

can be feasibly handled.

174

• The level of efficiency of the runtime support enacting and automating that

coordination policy.

• The range of problems that can be expressed and addressed.

The aspects listed above will be considered in Section 6.2, for framing and

interpreting the results of the evaluation of Workflakes with respect to work

hypothesis H2.

6.1 Assessment of the experiments

To weigh the value and the potential benefits of the ideas as well as the system

developed in this research, one natural way is to look at the experiments that have

been carried out, and described in Section 5. From their findings and results, it may

be possible to infer a certain set of contributions, and a number of claims that can be

made on the basis of those contributions. Those can in turn be related to some of the

major issues in externalized dynamic adaptation, and, more specifically, about its

coordination role.

The table in Figure 23 summarizes the case studies described in Section 5: it classifies

the kind of dynamic adaptation they provide, according to the four major concerns of

autonomic computing (configuration, healing, optimization and protection);

additionally, for each of those case studies, it also displays the kind of impact that

dynamic adaptation is intended to have on its corresponding target system.

From the Table, it is visible that the dynamic adaptation exerted in the case studies

significantly covers many different concerns that are relevant in the field, with the

exception of protection / security issues. The recent SABER work [159], however,

represents an effort to extend that coverage, since it proposes to employ the concepts

175

that have guided the development of KX and Workflakes, as well as the experience

and results that derived from those works, to address security and survivability issues.

Therefore, it appears that the lack of application of this research to protection may be

incidental, rather than principled.

A first conclusion that can be drawn and a first claim that can be made is therefore

that the approach that is pursued by this research is sufficiently general to apply to the

majority of contexts and scenarios that are envisioned for dynamic software

adaptation.

A similar analysis can also be made with respect to the typology of the target systems

used in the various experiments, aiming at showing the suitability of certain

categories of system for the proposed approach to dynamic adaptation. Various target

system categorizations can be drawn, according to different dimensions. In the Tables

displayed in , and , three orthogonal dimensions are

used, referring to the degree of distribution, the real-time characteristics, and the

distributed computing infrastructure layer upon which the target system mainly

operates.

Figure 24 Figure 25 Figure 26

17
6

A
ut

on
om

ic
 a

sp
ec

ts

C
as

e
St

ud
y

Ta
rg

et

D
om

ai
n

C
on

fig
ur

at
io

n

H

ea
lin

g
O

pt
im

iz
at

io
n

Pr
ot

ec
tio

n

B
en

ef
its

IM

In
te

rn
et

,

C
om

m
un

ic
at

io
n

D
ep

lo
ym

en
t

Se
rv

er
 c

on
fig

ur
at

io
n

St
ag

in
g

Fa
ul

t r
ec

ov
er

y

Fa
ul

t

pr
ev

en
tio

n

Sc
al

ab
ili

ty

R
es

po
si

ve
ne

ss

A
va

ila
bi

lit
y,

R
el

ia
bi

lit
y,

M
gm

t.
co

st
s

A
I2 TV

So

ft
re

al
-ti

m
e,

M
ul

tim
ed

ia

C

lie
nt

 S
yn

ch
ro

ni
za

tio
n

C
or

re
ct

ne
ss

G
eo

W
or

ld
s

In
te

rn
et

,

In
fo

rm
at

io
n

Sy
st

em
s

D
ep

lo
ym

en
t

A
rc

hi
te

ct
ur

al
 c

ha
ng

es

Fa
ul

t r
ec

ov
er

y

A

va
ila

bi
lit

y,

R
el

ia
bi

lit
y

W
eb

 S
er

vi
ce

s

M
ar

ke
tp

la
ce

E-
bu

si
ne

ss
,

C
om

po
ne

nt
iz

ed

se
rv

ic
es

D
ep

lo
ym

en
t

Fa
ul

t r
ec

ov
er

y
C

om
po

si
tio

n
po

lic
y

M
gm

t.
C

os
ts

,

Fu
nc

tio
na

l

en
ha

nc
em

en
t

Fi
gu

re
 2

3:
 T

ab
le

 o
f c

as
e

st
ud

ie
s c

on
tr

ib
ut

io
ns

.

 177

Distribution Case Study

LAN Corporate WAN Extranet Internet

IM

AI2TV

GeoWorlds

Web Services

Marketplace

Figure 24: Classification of experiments (distribution dimension).

Figure 24With respect to the distribution dimension shown in the Table of , the

conducted experiments demonstrate a sufficiently complete coverage across its

spectrum. No target system in any experiment specifically operates on a LAN, but the

issues that are typically present in a LAN are generally subsumed by those that can be

found in a Corporate WAN or in an inter-organizational Extranet, which are both

covered in the experiments set.

It is noticeable that in the GeoWorlds experiment, the architecture-level adaptations

were in fact experimented with across the Internet at large, with the Workflakes

engine sitting in Italy, and the other KX components, as well as the hosts where

adapted GeoWorlds services were running, situated instead in New York (in the PSL

laboratory of Columbia University), California (in the ISI facilities of the University

of Southern California), and, in one occasion (for the Demonstration Days of the

DARPA DASADA program) in Baltimore, Maryland,. The only noticeable effect of

such a widespread configuration were – understandably - rather long delays in the

 178

flow of communication throughout the dynamic adaptation loop, and consequently in

its end-to-end response time. Given the non-real-time nature of the adaptations

carried out and of the GeoWorlds system at large, those delays did not represent a

critical issue.

Timeliness Case Study

No real-time Soft real-time Hard real-time

IM

AI2TV

GeoWorlds

Web Services

Marketplace

Figure 25: Classification of experiments (real-time).

Figure 25In fact, as shown by the Table in , timeliness requirements are not present in

any of the experiments, with the exception of AI2TV, in which soft real-time aspects

of dynamic software adaptation were purposely investigated (see Section 5.2). The

available experimental data provides evidence that an externalized and process-based

dynamic adaptation approach can be effective also for target systems that have soft

real-time requirements, whereas it cannot shed light on hard real-time systems. For

them, the principled objections outlined in the discussion about timeliness of Section

3.3, for instance regarding the highly variable delays that could be induced by the

response time of the externalized control loop, remain valid.

 179

Case Study Operation Layer

Service / Appl. Middleware Data O.S. Networking

 IM

 AI2TV

 GeoWorlds

Web Services

Marketplace

Legend:

 Target system operates at this layer

 Dynamic adaptation occurs at this layer

Figure 26: Classification of experiments (main operation layer).

The Table in Figure 26 lists different layers that are recognizable in a typical

distributed computing infrastructure. As it is evident by simply looking at the works

reported in the issue of the IBM Systems Journal devoted to autonomic computing

[77], dynamic adaptation, in some of its many possible incarnations, appears to apply

to software systems and components operating on all of those layers. Adaptation can

start from the bottom with the network transmission layer [78], and move up to the

topmost layer, where user applications operate and provide their services [81],

through the intermediate layers represented by operating system [80], data storage

and management [79] and middleware [82], including application server architectures

[83].

 180

The Table shows how the examples selected to validate Workflakes mostly

concentrate upon target systems whose main area of operation is the application layer.

That can be explained in two ways: firstly, the higher the distributed computing layer

at which target elements operate (that is, the closer to the application layer), the easier

is in general to have available and leverage open interfaces that enable the essential

monitoring and actuation roles of the dynamic adaptation platform; on the contrary,

the lower layers may remain partially or completely hidden, and are likely to be used

in a black-box fashion by services at the higher layers. Furthermore, it is in general

easier to elicit the requirements and estimate the impact of dynamic adaptation for

target systems that must deliver some tangible service to end users. As a

consequence, also the dynamic adaptation exerted on the selected targets impacts

mainly the same layer. However, as shown in the Table, certain adaptations that are

necessary to bring forth benefits onto the main operation layer of the target system are

sometimes carried out also upon different layers.

The only area where no investigation was carried out in the context of this work was

the operating system layer. That can be seen as a consequence of the externalized

stance of the dynamic adaptation solution proposed: adding some adaptive features to

an operating system from the outside would imply that a program that is executed in a

non-privileged mode could acquire some deal of runtime control and influence upon

the innards of the operating system, which is something that is generally not

recommended. Operating systems represent a domain in which internalized

mechanisms are more adequate to achieve adaptation capabilities, either statically, for

instance through extensibility, like in [84] or [85], or dynamically, like in [86].

 181

Considering all of the above, the experiments sufficiently show that the described

approach can be applied to dynamically adapt most of the major recognizable

elements that constitute a typical environment for distributed software applications

and services. Given the nature of the experiments, however, dynamic adaptation at

the middleware and data layers could be only partially explored.

Only one experiment focuses specifically on middleware issues; among the selected

target systems, some of the others do not rely on a significant amount of middleware

software, while for others still the presence of middleware is completely transparent

and remains orthogonal to dynamic adaptation issues. From the literature, however, it

is possible to derive ample evidence about the applicability of dynamic adaptation at

the middleware layer. For example, investigation of reflective middleware [93] (i.e.,

how middleware can dynamically adapt itself, in addition to applications that run

upon it) has granted – among other results - a number of International Workshops

[87] [88] and a permanent space in the IEEE Journal on Distributed Systems Online

[89]. Moreover, some reflective features promoted by research, like [2] for reflective

Object Request Brokers (ORBs), are beginning to be accepted more widely even in

commercial middleware platforms.

In fact, run-time adjustments to the middleware platform upon which an application is

built are a powerful way to cause system-wide effects on that application. Reflective

middleware can achieve that, in a way that is in line with the idea of internalized

adaptation; externalized adaptation impacting the middleware layer, for example

through one or more “autonomic services” that can be plugged onto a generic

middleware core and that encapsulate dynamic adaptation roles, is a specific research

 182

thread that deserves to be further investigated. The orchestration capabilities of such

an approach could be possibly developed by building upon and extending workflow

capabilities that are being already incorporated within certain middleware platforms,

such as Grid computing [50] [92] and Web Services [94] [95]. Those workflow

capabilities are however currently oriented principally towards the domain of

automated, on-the-fly service composition, as discussed in Section 2.4, and

exemplified to an extent by the Web Services marketplace case study described in

Section 5.4.

Regarding dynamic adaptation at the data layer, the presented experiments treat their

data sources mainly as a black box; therefore, their dynamic adaptation is either not

concerned with the data layer at all, or exerted simply upon the interface of

application components with data management and storage components. Dynamic

adaptation regarding directly the latter is not considered.

Adaptation issues like query distribution schemes [90], adaptive caching [91] and

learning query optimizers [79] constitute specialized forms of run-time database

optimization, which are actively investigated within the database community and can

be implemented within database systems. Were they available and exposed through

an appropriate actuation interface by some data storage and management components,

there would be no principled reason why those features could not be exploited by an

externalized coordinator for the end-to-end adaptation of some target systems, in

particularly data-intensive applications.

 183

6.2 Assessment of the Workflakes system

All the case studies aim at validating the effectiveness of the process-based

Workflakes controller, by measuring quantitative or qualitative benefits to the target

applications put under its control. Those benefits, which are listed in the rightmost

column of the Table in Figure 23, contribute towards the evaluation of the

Workflakes system with respect to the two main working hypotheses previously

remarked. Each case study and each result highlights one or more aspects pertaining

to the working hypotheses and they can be classified and weighed accordingly.

The results of the various case studies are presented in detail in Section 5. Among the

case studies, the two major ones (IM, see Section 5.1, and AI2TV, see Section 5.2)

provide quantitative measures as well as qualitative considerations. For the others,

only qualitative observations are available. Those other case studies are reported

principally because they reinforce with different examples some of the results

observed in the two major ones, and also because they provide some degree of

diversity, since (as shown in Section 6.1) they in part deal with different application

domains, address different aspects of the autonomic computing field, or operate on

different layers of the distributed computing environment of their target systems.

This Section intends to discuss the significance of the reported results, relative to the

working hypotheses and limited to the two major case studies. As a prologue to that

discussion, a comparison between the different process-based facilities used for the

IM vs. the AI2TV case study (Version 1 vs. Version 2 of Workflakes, respectively

presented in Section 4.1 and 4.2) is hereby established, since it represents an

additional result of the experimental work.

 184

Coding vs. Modeling Dynamic Adaptation Processes

The IM case study was carried out with Workflakes Version 1; the AI2TV case study,

instead, represented the first application of Workflakes Version 2. There is value in

comparing those two releases, to gain an understanding of the implications deriving

from their different ways to develop and represent processes that orchestrate dynamic

adaptation. Version 1 comported coding processes directly in a programming

language, such as Java (although through the process specification paradigm and the

corresponding libraries offered natively by Cougaar, plus the coding patterns that

Workflakes Version 1 makes available on top of them, via shell plugins and process

definition junctions). In Version 2, the process is modeled in an abstract and

dedicated formalism that is substantially diverse and separated from the code in the

runtime engine that interprets and executes that process.

One important preliminary observation is that in the IM experiment, the coordination

process is considerably more involved than in the AI2TV experiment. That is natural,

considering the different natures and purposes of those two processes. The IM

process essentially captures and automates system management procedures that must

be enacted according to a situational logic; since the various target components

impacted by the adaptation process are tightly dependent on each other for the

delivery of the overall service, each phase of that process is also dependent on the

outcome of other phases, and may incur internal as well as external contingencies that

need to be properly accounted for. The AI2TV process, instead, captures a

synchronization scheme that needs simply to be executed from start to end

periodically. Although the ultimate goal of the dynamic adaptation of AI2TV is to

 185

keep multiple clients synchronized, the single adaptations that may be necessary for

the various clients do not have cross-dependencies that may influence each other. In

case an adaptation does not work out as expected on one or more clients at some

point, no particular disruption to the rest of the system occurs, besides sub-optimal

group synchronization until the process is enacted again in the next round.

Consequently, there are no contingencies to account for, nor alternative or

exceptional process courses.

The complexity of the IM process is directly reflected in the amount of code that was

written to implement it. The 6 Java classes defining the process definition junctions

(i.e., the data and control flow of the process, according to Workflakes Version 1 4.1),

account for almost 60% of the total lines of Java code written to customize the entire

KX platform for the IM case study (and still around 50% of all the lines written, in

case also XML code is counted in). It is therefore not surprising that the amount of

effort necessary to develop the process specification for the IM case study with

Workflakes Version 1 was in the order of several work weeks, which reflects the

complexity of the problem and remains in line with the productivity that can be

expected from a generic software development task.

In the AI2TV case study, instead, most of the coding complexity resides not in the

coordination role, but rather in the helper functions that implement the decision role

and that the process invokes at each round to figure out if and how each AI2TV client

needs to be adapted. The code of those helper functions, although admittedly

involved, is relatively lightweight, since they amount all together to about 200 lines

of Java code. What is noticeable is that practically no other programming code

 186

needed to be written to enable the client synchronization workflow of the AI2TV case

study, as presented in Section 5.2. The only other effort regarded the modeling of the

process in Little-JIL from scratch, employing the Visual-JIL editor, which took a

couple of work days.

Even by considering the different inherent complexity of the IM and AI2TV

coordination problems, one order of magnitude looks like a significant difference in

favor of Workflakes Version 2 and its high-level process modeling capabilities.

Further data to validate this observation could to be collected with the progressing of

the AI2TV case study, as the short-term client synchronization workflow is integrated

and harmonized with the medium- and long-term workflows, in a larger, more

complex and multi-faceted coordination process.

There is another factor that hints even more clearly at how hard it can be to define,

maintain and evolve a dynamic adaptation process, when it is expressed in a rather

low-level way, such as a conventional programming language. When, at a certain

stage in the IM experiment, the process was extended to include the orchestration of

graceful service staging (as described in Section 5.1), it was quite difficult to modify

the code defining the process for that purpose, while maintaining it correct and

backwards-compatible with the previous version, which was dealing only with the

deployment and on-the-fly scalability of the IM service. In the end, it was simpler to

load the junctions defining the staging process in a separate instance of the

Workflakes engine, as opposed to run the process as a whole in a single engine: that

comported a significant deal of unnecessary code duplication, since many of the tasks

 187

in the staging process are the same used for orchestrating deployment and scalability,

although wired together with a different and more complicated logic.

Using high-level process modeling facilities, it is easier to manage the maintenance

and evolution of the process specifications and keep under control any growth in

complexity like the one experienced in the IM case study. With the Little-JIL visual

language, for example, it is easier to figure out at a glance the possible

interdependencies of various parts of a process. It is also easier to promote re-use of

fragments of the process specifications, since the hierarchical structure of Little-JIL

naturally supports modularization; furthermore, Visual-JIL also enables to exploit that

modularization by using references: a reference can appear as a legitimate sub-step in

the expansion of any process step, and constitutes a pointer to some other sub-tree in

the process hierarchy.

Interpretation of case study results

The IM case study was among the first experiments that were carried out with KX in

its entirety (together with the GeoWorlds experiment – see Section 5.3), and the first

which demanded a significant level of complexity for the coordination role. As such,

it was instrumental in verifying the general feasibility as well as the effectiveness of

an externalized approach to dynamic software adaptation. Therefore, measures and

observations deriving from the IM case study contribute principally to evaluate the

issues related to working hypothesis H1. At the same time, the IM case study

contributes to evaluate also the suitability of a process-based approach to the

description and enactment of coordination in dynamic software adaptation, which

relates to working hypothesis H2.

 188

It is the AI2TV case study that contributes mainly to the validation of hypothesis H2,

with respect not simply to the suitability but also the effectiveness of the process-

based approach embraced by Workflakes, as well as of its implementation in the

Workflakes system itself.

Considering all of the above, it is possible to draw a synthesis that evaluates the

presented results against each working hypothesis. As far as working hypothesis H1

is concerned, such a synthesis is presented in : that Table reports findings

coming from the IM case study only.

Figure 27

The Table in Figure 27 conveys a twofold message. First of all, it shows how the

accomplishments of externalized, process-orchestrated dynamic adaptation applied to

the IM case study are in line with the kinds of benefits that are typically expected of

autonomic computing and analogous initiatives. One of the major motivations for

autonomic computing is to alleviate the exploding complexity of the management and

administration of today’s software systems; another major claim is that running

autonomic software can bring about and maintain higher QoS levels. The

accomplishments summarized by, respectively, the “Mgmt. savings” and “Runtime

improvements” columns of the Table address precisely those two issues. Therefore,

they serve as a confirmation of how the approach proposed by this work is a suitable

means to reach some of the primary goals of autonomic computing.

 18
9

H
1

–
Fe

as
ib

ili
ty

 a
nd

 e
ff

ec
tiv

en
es

s f
 e

xt
er

na
liz

ed
 a

da
pt

at
io

n

B
en

ef
it

Ex
am

pl
e

M
gm

t.
sa

vi
ng

s
R

un
tim

e
im

pr
ov

em
en

ts

D
ev

el
op

m
en

t
im

pa
ct

G

ra
nu

la
rit

y
le

ve
l

D
ep

lo
ym

en
t a

nd
 c

on
fig

ur
at

io
n

½
 d

ay
 to

 2
 m

in
.

Sy
st

em
 a

dm
in

is
tra

tio
n

A
ut

om
at

ed
 /

co
nt

in
uo

us

Im
pr

ov
ed

 re
lia

bi
lit

y

40
 s.

 re
ac

tio
n

tim
e

Im
pr

ov
ed

 a
va

ila
bi

lit
y

O
n-

th
e-

fly
 sc

al
ab

ili
ty

N
on

e

A
rc

hi
te

ct
ur

e

C
om

po
ne

nt

Pa
ra

m
et

er
 (s

et
tin

g)

Fi
gu

re
 2

7:
 T

ab
le

 su
m

m
ar

iz
in

g
co

nt
ri

bu
tio

ns
 to

w
ar

ds
 h

yp
ot

he
si

s H
1.

H
2

–
su

ita
bi

lit
y

an
d

ef
fe

ct
iv

en
es

s o
f p

ro
ce

ss
-b

as
ed

 c
oo

rd
in

at
io

n

C
om

pl
ex

ity
 fa

ct
or

s
C

as
e

St
ud

y

G
oa

l
D

yn
am

ic

pl
an

ni
ng

In

te
rn

al

co
nt

in
ge

nc
ie

s
Ex

te
rn

al

co
nt

in
ge

nc
ie

s
C

om
pe

ns
at

io
ns

Ti
m

e
co

ns
tra

in
ts

Ef
fo

rt
R

un
tim

e
Su

pp
or

t

R
ed

uc
e

co
st

s
IM

(a

ut
om

at
ed

m

gm
t.)

En
ha

nc
e

Q
oS

W
ee

ks
T

im
e:

 n
.a

.
C

om
pl

ex
ity

:
pr

oc
es

s s
pl

it
in

m

ul
tip

le
 e

ng
in

es

En
fo

rc
e

co
rr

ec
t

be
ha

vi
or

A
I2 TV

(d

is
tri

bu
te

d
sy

nc
.)

En
ha

nc
e

Q
oS

D
ay

s
T

im
e:

 ~
20

0
m

s
(s

of
t r

ea
l-t

im
e)

Fi
gu

re
 2

8:
 T

ab
le

 su
m

m
ar

iz
in

g
co

nt
ri

bu
tio

ns
 to

w
ar

ds
 h

yp
ot

he
si

s H
2.

 190

Furthermore, the results reported in the other two columns, “Development impact”

and “Granularity level”, underline together how embracing an externalized approach

to dynamic adaptation can be (at least) as effective as internalized approaches. One of

the potentially critical limitations of externalized dynamic adaptation is that it has

only limited access to the innards of a legacy target system – especially whenever the

source code is not available – which could prove insufficient whenever very involved

and fine-grained adaptations are needed. That is instead by definition not an issue for

internalized approaches. In the IM case study, it was possible to effect adaptations at

various – even quite fine – granularity levels without impacting in any way the

development of the target system. Such a result testifies that, by paying the right

amount of attention to the design of the platform and the use of appropriate

technologies for the contact points with the target system, externalized dynamic

adaptation may be able to overcome that hurdle, and deliver its signature advantage:

the ability to orchestrate end-to-end dynamic adaptation across the various distributed

and heterogeneous components of a legacy target system.

The Table in Figure 28 presents a synthesis of results that pertain to hypothesis H2. In

the first place, the “Complexity factors” column groups together a selection of issues

that (without claiming to be exhaustive) represents aspects that are particularly

relevant and potentially complex for the coordination role of dynamic adaptation. The

Table shows how the processes defined for the two case studies address together the

majority of them, with the exception of compensations (hiven the nature of the

coordination problems, provisions for compensations branches in the processes were

not necessary in both major case studies). Furthermore, the Table reports, side by side

 191

with the complexity assessment just discussed, data about the effort needed to define

the processes, which highlights the level of improvement and effort savings made

possible by embracing an abstract modeling formalism. It also reports indications of

level of run-time support and performance provided by the Workflakes engine in its

various versions in enacting the processes.

For a characterization of the range of dynamic adaptation problems that were

addressed it is instead possible to refer to Figure 23, which shows how the two major

case studies together cover a variety of issues pertaining to configuration, healing and

optimization. That, taken together with the diverse goals of the IM and AI2TV case

studies, which are reported in the Table of , can be considered as evidence

of the applicability of the process-based approach to a wide spectrum of problems.

Figure 28

The message conveyed by the Table is threefold. It shows that process-based

coordination represents a suitable choice for a number of diverse applications of

dynamic adaptation, even with demanding levels of complexity. It also shows that

process technology has the potential to provide efficient run-time support even in

domains that impose significant performance and timing constraints to the dynamic

adaptation facilities. Finally, it confirms the necessity of a high-level enactable

formalism to define, handle and manage any non-trivial coordination problem in the

form of a process.

6.3 Limitations and open issues

The previous Section tries to provide an organic view of the accomplishments

reached by the experimental work towards the working hypotheses inspiring this

research. For a complete evaluation, it is equally important to assess the inadequacies

 192

or shortcomings that have been found, and any issues that still need to be resolved,

which can motivate future research efforts on this same theme.

In the first place, it is worthy to recall that there are some limitations of externalized

dynamic adaptation that restrict its suitability, with respect to certain application

domains, such as hard real-time, or certain categories of adaptation targets, such as

operating systems. Those limitations have been already previously discussed within

this document, for example as part of the principled critique of the approach in

Section 3.4, or the assessment of the experiments and their coverage in Section 6.1.

Those limitations seem inherent to the externalized nature of the approach; therefore,

they can be viewed as known boundaries for its usability. It is possible that further

investigation and experimentation will help identifying more clearly other such

boundaries, which may have not been yet highlighted.

One of the most important outstanding problems at the current stage of understanding

of processes as orchestration means for dynamic software adaptation, is that each

single process (or process fragment) is developed ad hoc from start to end for each

target system condition that triggers a certain adaptation. That is obviously difficult,

costly and time-consuming. The foundations and techniques for moving from such ad

hoc crafting to a more systematic engineering of coordination processes for dynamic

adaptation are not yet well understood at this stage. Such systematization is likely to

require the ability to capture a great wealth of knowledge about the target system at

run time, and incorporate it seamlessly into the decision and coordination roles of the

dynamic adaptation facility.

 193

The availability of that knowledge could enable the direct generation of coordination

patterns and processes in a largely automated way. For such a breakthrough, however,

a very comprehensive target system model must be available. The development of

such a model requires a two-pronged approach: a mix of advanced analysis skills and

tools, coupled with powerful modeling abstractions and formalisms.

The modeling part of that problem is being addressed, for instance, by advancements

in Architecture Description Languages, which attempt to extend architectural models

with features that deal with dynamic aspects. Besides capturing with increasing

sophistication the behavioral aspects of a system in addition to the structural aspects,

they start to address other issues that are important to achieve run time support, such

as maintaining the model consistent with respect to the running system, continuously

evaluating the system configuration against the model for the diagnosis of anomalous

behaviors or other conditions, and selecting architecture-level adaptations that

maintain or bring back the system as a whole to legal configurations, as per the

architecture definition. Such architecture-based adaptation [53] [62] attempts to root

the otherwise mainly empirical work of developing dynamic adaptation software in

the realm of formal design.

Experimentation with architecture-based adaptation was a focus of the GeoWorlds

case study described in Section 5.3. One of the lessons learned in that experiment as it

stands regards the rather large gap that still exists between the amount and kind of

system knowledge captured and made available by state-of-the-art architectural

models and the nuances present in the system implementation, or, even more so, in a

“live” instantiation of the implementation that runs within a certain computing

 194

environment. That gap may be due in part due to the fact that, most of the time,

architectural models are artifacts produced during the design phase of the software

development process, and as such tend to provide an a priori, top-down perspective

on the system, which necessarily remains somewhat abstract with respect to

implementation details, independently from the expressiveness of the description

formalism and the richness of the model. That means that architectural models by

themselves might remain incomplete with respect to the amount of knowledge and

detail necessary to capture and reason about a running system.

Run-time analysis tools could be employed to bridge the remaining gap. The

synthesis or enrichment of architectural models a posteriori, from the observation and

analysis of the running system, such as for instance in Software Surveyor [66] could

complement architectural modeling by adding a bottom-up perspective on the

architecture.

An alternative may be to produce a system model that directly captures the essence of

the implementation as is, rather than abstracting it up at the architectural level. [81]

proposes to attach formal behavioral descriptors to code blocks (i.e., modules): it

argues that the bottom-up perspective provided by a model derived from the

implementation is intrinsically more faithful, detailed, granular, and hence more

suitable for the purposes of dynamic adaptation, than a model conceived mainly at

design time. That method requires that developers pick up the practice of including

the descriptors in their code, which can be seen as an extension of their duties,

although somewhat akin to documentation.

 195

However construed, a sufficiently complete model would offer a significant degree of

support to the engineering of processes for the coordination of dynamic software

adaptation. By being able to understand and reason in the abstract about the various

possible ways in which a system needs to be adapted on the basis of a model, it may

be possible to come up at design time with the right set of process fragments, which

can contribute to the solution of a variety of dynamic adaptation situations for a given

target system; then, at run time, it may be possible to compose them as needed by the

situation at hand. Thus, the final layout of the process orchestrating a certain complex

dynamic adaptation could be decided dynamically.

A possible extension in that direction of the use of architectural models is described

below. It assumes capabilities and features for the architectural tool set similar to

those provided by CMU’s ABLE, which has been already experimented with in the

context of the GeoWorlds case study.

First of all, to enable that scenario, some gauges are devoted to diagnosing and

reporting architecturally significant events to the architectural tool set. Those gauges

serve the purpose of checking and maintaining consistency between the system

running on the field and its model, and can be constructed starting from certain

aspects captured by the model. For example, that includes the compliance with

constraints placed on the model, which state what are the acceptable working

conditions for the system. The architectural tool set evaluates gauge events such as

the violations of one or more of those constraints with respect to the model, and takes

dynamic adaptation decisions, according to a logic that is completely encapsulated by

its knowledge and understanding of the model, and can remain opaque to the rest of

 196

the platform. Decisions are expressed as transformations, which again predicate on

the model, and impact the layout and the attributes of the architecture. Those

architectural transformations, which aim at placing the system in a new configuration

that respects all constraints, can require one or more operations: each operation is a

directive which represents a modification of some part of the model. Since that

modification must also be effected on the implementation of that model, it also

represents a trigger for a ration process fragment that impacts accordingly the target

system running on the field.

As a simple example, a single directive that could be part of an architectural

transformation and that could be pushed from the architectural to the implementation

level (that is, from the model-based decision role to the coordination role) could be

something like: “Move Service X from Host A to Host B”. While that can be seen as

an atomic architectural transformation operation, it needs to be translated at the

implementation level in a process fragment made of multiple, fine-grained adaptation

steps. That adaptation process fragment may involve for example the following steps:

• deployment and instantiation of a new instance of the component providing

Service X on Host B;

• detachment of any communication links between the “old” instance of X on Host

A and other running components of the target system;

• re-establishment of corresponding communications with the new instance of X;

• and, finally, shutdown of the instance of X still running on Host A, but not needed

anymore.

 197

The sequence described above is hypothetical and possibly simplistic; furthermore, it

does not take in account any internal contingencies that can occur at some stage of the

adaptation, which should be handled explicitly by appropriate secondary branches of

the process.

Recalling that each directive is a single operation in a transformation of the

architecture, it is evident that – with this approach - the architectural tool set drives

the instantiation and enactment of as many concatenated process fragments as the

various operations needed to complete the architectural transformation that is being

enforced on the architecture.

Besides facilitating the engineering of adequate processes for dynamic adaptation, an

approach of that kind may be the key to resolve another shortcoming associated to the

ad hoc approach to the development of dynamic adaptation processes, that is, pre-

determined (as opposed to open-ended) processes.

Currently, each trigger that signals a target system condition of interest must be well

known in advance and unambiguously associated to the adaptation resolving it.

Similarly the adaptation must be fully planned ahead, including the insertion of

explicit provisions for the handling of all external and internal contingencies. That

leads to processes that provide “canned” solutions only to a necessarily limited and

pre-determined set of target system conditions, rather than to open-ended processes

that potentially cover also unusual or unexpected criticalities as they occur.

The definition of open-ended processes is typically more bottom-up, compositional

and fine-grained than that of a fully planned-ahead process; it would require a rich

catalog of “elementary” process fragments that enact low-level adaptations, which

 198

can be incrementally composed. That, however, comports at least two major

difficulties.

One problem is that an open-ended process obtained via the situational composition

of fine-grained fragments may remain completely implicit and “hidden” to an

analysis carried out a priori on the process specifications. It could possibly emerge as

a whole only after it has unfolded from start to end, i.e., from the arrival of some

initial trigger that fires an initial process fragment and that signifies a certain

macroscopic target system condition to be dealt with, to the achievement of the

desired target system state that resolves the above-mentioned condition. In the end,

the dynamic adaptation process would have evolved through a series of intermediate

modifications to the state of the target systems, achieved via a series of incremental,

low-level adaptations. But also an analysis a posteriori may fail to elicit the full-

fledged process as it emerges from the open-ended composition of elementary

fragments, because of the potentially large number of interacting process fragments

and the variability of the resulting processes.

Even if the problem of understanding (and then being able to maintain) a dynamic

adaptation process designed in a very open-ended fashion is resolved, for example, by

exploiting means for analysis of the process activity logs such as those proposed in

[29], another problem remains. It is quite difficult to decide upon the set and mix of

elementary process fragments that must make it into the process specifications. The

problem is to come up with the right catalog of fine-grained process fragments, which

would be largely specific to each and every dynamic adaptation application, which

should cover a large and possibly indefinite spectrum of situations even within the

 199

same application, and whose interactions should ensure the correct response to those

situations, in terms of dynamic adaptation orchestration.

Both of the above problems, furthermore, affect not only the design, but also the

testing and validation of any dynamic adaptation facilities employing open-ended

process-based coordination.

It seems that comprehensive modeling and analysis capabilities like the one discussed

earlier as a support to the engineering of dynamic adaptation processes would also

help in the solution of both of the above problems: a model could be used to drive and

validate the selection of process fragments to be placed in the catalog; the

complementary ability to record and analyze the dynamics of the target system

against the blueprints provided by the architectural model would ease the task to elicit

and reason about the open-ended processes implicitly put in place.

Another open issue in relation with this work is the difficulty to come up with an

evaluation framework for comparing dynamic adaptation approaches relatively to

each other. The elaboration of appropriate metrics that can be used to frame such a

relative evaluation is a theme that has not been investigated much to date, in part

because of the novelty of the field. But a more fundamental problem comes from the

quite broad goals and scope of dynamic software adaptation and other analogous

initiatives. If one looks at the two major case studies reported in this work, the

differences are already macroscopic. In the IM case study, the major intended

improvements occurred in the area of service management efforts and costs, and in

the area of improved service availability; the intended effect of dynamic adaptation in

the AI2TV case study, instead, is all about enforcing the correct behavior of the

 200

system while enhancing its quality. Those goals are expressed in entirely different

terms.

Since many disparate areas of interest and investigation like the ones mentioned

above co-exist in the dynamic adaptation problem space, it is particularly hard to

come up with a limited and coherent set of application-independent metrics that can

capture and summarize the validity of general-purpose dynamic adaptation facilities.

For example, a common claim in the context of autonomic computing is how it can

greatly reduce system management costs, and thus of the Total Cost of Ownership

(TCO). Since it can be legitimately argued that system management costs largely

reflect the effort necessary to handle and keep under control the complexity of the

managed system, and since the taming of such complexity is the original motivation

and goal of autonomic computing, TCO reduction might be seen as a valid candidate

for a generic evaluation metric. However, as exemplified by our AI2TV case study, it

is easy to find applications of dynamic adaptation whose benefits to the target system

cannot be measured at all in terms of reduced TCO.

A possible alternative to trying to constrain within a fixed set of dimensions the

evaluation of dynamic software adaptation, is to abandon the idea of accomplishing

relative evaluation independently from the application, which might prove more

realistic, given the nature and heterogeneity of its problem space.

A possibility could be the creation of a composite benchmark, including a variety of

baseline experiments that cover the various areas within the problem space of

dynamic software adaptation. It might be possible to define and exploit to that end a

set of target systems in different application domains, choosing from well-known

 201

systems, perhaps best-breed open source projects. Different approaches could be then

compared relatively to each other in terms of how they score with respect to the

various experiments, and the scores would capture the benefits brought about in each

experiment in absolute terms, with respect to a set of dimensions and metrics that are

recognizably relevant for that experiment.

Another way that could be explored is to tie the evaluation directly to the original

requirements of the target system, and to the degree of fulfillment of those

requirements that the adaptive solution is able to guarantee. Such an approach would

help establishing a strong inter-dependence between the engineering of requirements

specifications and the engineering of dynamic adaptation facilities (once again, the

availability of comprehensive modeling capabilities could help, in bridging the two

areas and in setting, maintaining and reasoning about that correlation).

Such an approach would also shift the issue of coming up with homogeneous means

for the evaluation of dynamic adaptation from the solution domain to the problem

domain. Within the definition of the problem domain of each application, it is feasible

to denote the importance and the weight that each requirement has for that application

(for example by exploiting requirements prioritization, traceability relationships, or

other methods and tools used for analysis and evaluation in the field of requirements

engineering [169]). Having established that, it may then be possible to assign a

“value” to the ability by a dynamic adaptation solution to enforce the compliance of

the application at run time with a given requirement.

Finally, another significant issue that remains in part open at this stage is that of meta-

adaptation. A dynamic adaptation platform is in itself a complex, distributed software

 202

system. While it strives to provide important features to its target system, such as self-

configuration, self-optimization, self-healing and self-protection, it can itself suffer

from problems and failures that may impact its ability to perform efficiently or event

correctly. There is a clear need for the dynamic adaptation platform to be able to

assess and tune itself while it runs, ideally without interrupting its supervision of the

target system. Dynamic adaptations may apply to various roles and elements in the

platform; some examples are the instantiation, withdrawal or tuning of sensors and

gauges, or even the modification and update of decision policies and coordination

plans.

To achieve meta-adaptation capabilities, the availability and semantic richness of

behavioral models – applied this time to the platform itself and its possible operation

– appears to be once more a crucial issue.

6.4 Comparison with the state of the art

The discussion below intends to highlight the differences and the original

contribution of the research presented in this document with respect to a variety of

other techniques and works that address the problem space of dynamic software

adaptation in ways that are closely related to Workflakes. Therefore, this discussion

concentrates primarily on approaches that show an explicit coordination focus.

Process-based software coordination

Once again, it is important to notice that it is its externalized stance that most strongly

characterizes Workflakes. Often, in fact, automated solutions to software coordination

and control present structural dependencies with respect to the subjects of their

 203

coordination.

Some of those solutions can be seen as an evolution of built-in fault tolerance code.

For example, [71] proposes a rule-based inference engine for decision support in

application-level QoS assurance, which incorporates a coordination entity guiding a

set of computational actuators. However, the coordinator and actuators must both be

embedded with each target component. Solutions like that make it more difficult to

define system-wide adaptations and limit the adaptations that can be carried out

without rebuilding the target.

Another classic approach is that of an environment or middleware with native

dynamic adaptation capabilities. Generic (i.e., not necessarily process-based)

examples of dynamic adaptation middleware include Conic [3], Polylith [1], 2K /

dynamicTao [2] and many others.

Also many works that employ process technology for software control and

coordination adopt in fact a middleware-like approach, by exerting the coordination

“from the inside”, that is, on the target’s own computations. For example, [72]

introduces Containment Units, as modular process-based lexical constructs for

defining how distributed applications may handle self-repair and self-reconfiguration.

Containment Units define a hierarchy of processes that predicate on constraints and

faults, and take action to handle faults within the defined constraints. The enactment

of Containment Units is under the responsibility of a process engine that is integral to

the system being adapted, and proceeds by directing changes on the target

components, which by definition are process-aware.

 204

PIE [10] is another example of a process-based middleware, which supports

federations of components. PIE adds a control layer on top of a range of inter-

component communication facilities. The control layer implements process guidance

via handlers that react to and manipulate the communications exchanged by the

components in a federation. Dynamic adaptation is thus limited to the reconfiguration

of the service architectural connectors and is carried out by plugging in appropriate

handlers, as directed by the process, which intrude in the normal course of

computation of the target.

TCCS [73] has considerable similarities with Workflakes, since it employs its process

engine to direct the work of analogous effector agents, to carry out the dynamic

adaptation tasks. However, TCCS is the epitome of the middleware approach, since it

is in charge of all interactions between the system components, even normal

operations; that is, the target application simply does not exist independently from its

process and agent-based framework.

In each dynamic adaptation middleware mentioned above, all service components

need to be assembled from the start according to the middleware and its primitives.

This not only poses a considerable barrier with respect to legacy software, but also

introduces a very strong dependency between actors and subjects of dynamic

adaptation. Furthermore, the spectrum and granularity of possible adaptations is

effectively restricted by the set of primitives made available by the chosen

middleware. A similar observation applies also to those works that exploit the

characteristics of established middleware frameworks to facilitate certain aspects of

 205

dynamic adaptation, such as BARK [4], which is limited to the EJB component

model.

A particularly noteworthy effort is that presented in [180], since it regards the

dynamic adaptation of distributed applications directly developed with the Cougaar

infrastructure. That work considers large-scale logistics application running on

hundreds of collaborating Cougaar instantiations, which are regarded as a community

of distributed agents. The built-in workflow facilities of Cougaar are leveraged not

only to puruse the goals of those logistics applications, but also – in combination with

the resident monitoring facilities of the Cougaar infrastructure - to provide adaptive

control of the operation of the various Cougaar agents. The goal is to optimize the

overall performance of the community, trading-off some precision in the evaluation

and production of the logistics plans for increased throughput, when necessary

because of heavy computational load and environment conditions. That works thus

presents the peculiar case of an internalized, workflow-based dynamic adaptation

facility employed for the control of other workflow-based applications developed on

the same platform.

In contrast to all of the internalized approaches above, Workflakes remains

independent from any underlying computing framework and general with respect to

the reach, granularity and kinds of dynamic adaptation that it can exert, since the

target is fully disjoint from the dynamic adaptation engine.

The most similar process-based approach to the orchestration of dynamic adaptation

(that we know of) may be Willow [31]. Willow proposes an architecture for the

survivability of distributed applications, analogous to our vision of a superimposed

 206

feedback loop. In particular, Willow can implement reactive as well as proactive

dynamic adaptation policies, which are driven by codified architectural knowledge,

and enacted via a process-based mechanism built upon the previous Software Dock

(re-)deployment engine [36]. It appears, however, that Willow restricts itself to

coarse-grained reconfigurations, such as replacing, adding and removing entire

components, perhaps even composite substructures, from the target application, while

presuming conventional embedded approaches for more local and refined adaptations.

CHAMPS [183] is another system that employs process technology. It is noticeable

because it attempts to automatically generate an adaptation workflow on the basis of a

Request For Change (RFC) coming from an administration entity, which is typically

operated by humans. To that end, CHAMPS includes a Task Graph Builder, which

puts together single tasks and small fragments from a catalog, producing a sequence

of tasks with precedence constraints. The generated concatenation is then consumed

by the Planner & Scheduler of CHAMPS, which generates a slightly more complex

workflow, and tries to maximize the degree of parallelism among tasks, taking in

account precedence relationships, but also other aspects, like costs and Service Level

Agreements (SLAs), imposed on the target system. The resulting workflow is

translated into BPEL4WS for its enactment in a BPEL-compliant engine. The

extension of the generative approach of CHAMPS to cover more sophisticated flow

constructs is under investigation.

 207

Alternatives for the coordination of dynamic adaptation

Among the various existing software coordination paradigms (see Section 2.3), the

most common alternative approaches to fulfill the coordination role in dynamic

adaptation seem to come from the fields of agent-based and rule-based systems.

Agents have been already discussed in Section 2.3 as a coordination paradigm in

general, and in Section 2.4 with the purpose of highlighting their inter-relationships

with process technology.

There are several examples of agent-based systems that are related to the theme of

dynamic software adaptation. Some are concerned with the development of agent-

based applications that are adaptive or autonomic in themselves, thus falling into the

category of internalized dynamic adaptation. For example, [175] focuses on

embedding within agent-based applications fault recovery features by design. DarX

[176] focuses on the dynamic replication of those agents in a given community,

whose capabilities are or become critical during the life span and for the work of the

community. Anthill [170] implements adaptive behaviors within a large-scale

community of autonomous agents; Messor [171] is an example of an Anthill

application that provides load balancing for a Grid of computing elements

implemented as Anthill agents.

Other works regard the usage of agent-based techniques to carry out dynamic

adaptation on external, generic software applications and systems. For example,

AUTONOMIA [118], employs a coordination model derived from tuple spaces for

orchestrating mobile agents, which superintend to the self-healing and self-

optimization of a distributed software system. Target system components must be

 208

developed in accord with the AUTONOMIA middleware platform, which makes

them internally and natively autonomic, and exposes handles for monitoring and

actuation. However, the mobile agents exerting the adaptation, as well as their

coordination facilities, remain external to the system, even if they operate on top of

the same middleware. This configures a hybrid approach to the development of a full

dynamic adaptation loop, which remains unsuitable for legacy target system, but

promotes to a degree the separation of some autonomic concerns, such as decision

policies and coordination plans. ABLE [119] by IBM is a component-oriented agent

platform, in which each agent is composed of multiple AbleBeans (derived from

standard JavaBeans), and is itself an AbleBean. Some of the AbleBeans may

implement sensors and effectors to match and exploit any monitoring and actuation

functionality exposed by a target system component the agent is deployed onto;

others may provide analysis and control logic on top of the monitoring and actuation

AbleBeans. A catalog of AbleBean components is provided to that end, which

encapsulate a rich mix of techniques (such as, neural networks, rule bases, etc.) and a

range of algorithms for decision-making, collection of monitoring / diagnostic data,

and execution of effectors. In one typical ABLE architectural layout, agents overlay

the target system, with one (or more) agent(s) co-located with each single target

component, and implementing a mini-control loop that takes care of that component

in isolation. As the complexity of the dynamic adaptation problems grows, other

layers of agents can be added to provide an increasingly more sophisticated and

global perspective on analysis, decision and coordination. With respect to

coordination, ABLE seems to lean towards the implicit model of run-time negotiation

 209

among agents, supported by a subsumption architecture inspired by the original work

of Brooks [172].

Another agent-based autonomic platform is proposed in [173], which has two

distinguishing traits: it is organized by multiple layers of agents with different

responsibilities, like ABLE, and it has an explicit focus on architecture-level

adaptations. To that end, it incorporates a full-fledged, dynamic architectural model

that is exposed to the agents in the higher layer, which are devoted to decision-

making. Intermediate-layer agents are directed from the higher-layer and manage the

work of lower-layer agents, which implement the points of contact with the target

system for monitoring and actuation. Interventions by the lower-layer agents are

limited to the modification of the architectural layout, that is, adding, removing or

replacing components, or modifying connectors; therefore they remain somewhat

coarse-grained. Coordination-wise, plans are generated by the decision-making agents

at the higher layer, and orchestrated by intermediate-layer agents by sending stimuli

to lower-layer agents, which are completely reactive. It is however not clear what

kind of coordination paradigm is employed to express and enact those plans.

A layered approach is also employed by Lira [182], which employs a hierarchical

community of agents. The agent hierarchy maps to a structural breakdown of the

target system in applications, hosts, and components within each host. Each agent has

a local decision-maker, built with Petri Nets [204]. Agents at the lowest layer can

decide only on local adaptations; agents at higher layers can also direct lower-layer

agents to effect some adaptations. Adaptations are seen as atomic interventions

chosen from a limited set, since Lira does not currently support the concept of multi-

 210

step adaptations; however, the authors envision using a coordination paradigm – also

based on Petri nets - in future developments.

There are also several works that use rule-based techniques (previously discussed in

Section 2.3) for dynamic software adaptation. Rules of various kinds, such as ECA

rules, have been commonly used to express management policies and support their

automation to a degree (see for example [177]), even in traditional, human-intensive

management systems; a rule-based representation of those policies is recommended

also by the IETF [178].

Extending from there, rules can be conveniently used to specify and implement

autonomic behavior within single components, such as in [71]. They can further be

used to orchestrate multi-component adaptations. Autopilot [113], for instance, uses

fuzzy logic rules within a close-control loop facility embedded in a computing Grid,

for the optimization of the performance of parallel applications running on that Grid.

The Autopilot system seems to coalesce in the rule base the decision and the

coordination roles of a dynamic adaptation framework, although it is not clear what

degree of coordination complexity can be achieved in that way. Similarly, also

DIOS++ [114] works in the context of computing Grid optimization. The DIOS++

distributed rule base defines both the condition to be monitored by the dynamic

adaptation loop, and the actions to be taken in response to those conditions. Multiple

rule executors, co-located with the autonomic elements of the Grid to be adapted,

work in parallel and can influence each other when firing rules. Therefore, DIOS++

has the potential to define a full-fledged coordination plan that spans the Grid. Both

Autopilot and DIOS++ are evaluated with respect to the (reasonably limited)

 211

overhead they impose onto the computing infrastructure of their targets, but not with

respect to the management and/or performance benefits they bring about onto their

target Grid computing environments or applications.

RUDDER (see [117]) aims at the construction of a de-centralized rule engine for the

orchestration of dynamic adaptation policies on generic distributed computing

applications. Rule processors (dubbed rule agents) work in a peer-to-peer fashion,

and are distributed according to a layered architecture: the architecture includes some

master rule agents at the overall application level that control the work of other rule

agents, which are co-located with and, apparently, embedded into target system

components. Therefore, RUDDER provides a hybrid solution to the orchestration of

dynamic adaptation, which is partially externalized and partially internalized.

RUDDER seems to currently be at an early stage, and various aspects are still not

well specified, including, noticeably, the exact coordination semantics among peer

rule agents.

Eos [179] employs a rule base for deciding upon and carrying out adaptations. The

rule base contains ECA rules, augmented with additional knowledge that represents

the behavior implications of those rules. A behavior implication defines in a

declarative way the impact of firing the corresponding rule, in terms of observable

characteristics of the target system, for example response time, security, throughput,

availability, etc. In Eos, the decision on what rules must be fired to respond to a

certain condition that requires dynamic adaptation is taken following a multi-

dimensional evaluation of the likely impact of the rules’ execution on those

characteristics. Eos thus focuses primarily on sophisticated decision-making, while

 212

coordinated, multi-step adaptations are not explicitly considered. However, the

decision component can choose to concatenate multiple rules, because they provide a

path that achieves the desired impact on the target system, while minimizing any

undesired behavior implications.

 213

7 Conclusions and future work

This work has investigated the use of process / workflow technology for the

development of coordination facilities that can be used to orchestrate the dynamic

adaptation of distributed software systems, in particular large-scale systems of

(legacy) systems. This theme can be framed in the larger context of autonomic

computing.

Those coordination facilities are intended to provide a core service and fulfill a

critical role in an externalized platform, such as Kinesthetics eXtreme - KX, which

aims at superimposing dynamic adaptation on pre-existing software systems, from the

outside and without modifying those systems. Such a coordination role is

instrumental for the transformation of decisions on what adaptations must be pursued

in sequences of computational actions that actually effect the needed modifications on

one or more elements taking part in the target system.

This work proposes a model for processes that are suited for the orchestration of

dynamic adaptation: processes must reactively respond to triggers; they are

fragmented and structured as task hierarchies; coordination constructs are maintained

in inner nodes of the hierarchy, while leaf nodes map to actual units of work to be

effected on the target system; processes need to incorporate suitable concepts to

handle exceptions, in order to take care of internal contingencies, and must support

compensations, in case of internal as well as external contingencies.

The characteristics listed above have guided the design and development of

Workflakes, a workflow engine specialized for the fully-automated orchestration of

 214

dynamic software adaptation; this work reports on the two iterations of Workflakes

development completed to this date in accord to that design.

Workflakes represents one of the first process enactment engines applied to the

orchestration of dynamic adaptation, whose use and effectiveness has been validated

in a variety of applications. Workflakes has been experimented with in a number of

case studies (as part of KX and on its own), including and industrial-grade

application. The case studies reported here address a range of different application

domains, with diverse requirements and characteristics. It has been applied to many

of the major concerns of autonomic computing, including the self-configuration, self-

optimization and self-healing of software. The target systems subject to the

Workflakes controller can widely vary in a number of respects, such as their

distribution, the computing layers where adaptation takes place, and their timeliness

requirements. The range of adaptations supported varies in granularity from

architecture-level reconfigurations to the tuning of functioning parameters within

individual software modules.

Taken together, the presented case studies contribute to validate the underlying

concepts as well as the design and implementation of Workflakes and KX.

Quantitative and qualitative results collected in the case studies show significant

benefits in various areas of importance to autonomic computing, such as management

and administration savings, improvement of runtime quality aspects and the

enforcement of expected system behavior. Furthermore, all of those benefits can be

achieved with minimal or no impact on the development of the target system, as well

 215

as with little effort devoted to the development of dynamic adaptation features, that

must be customized for each application.

As a conclusion, this research demonstrates the suitability and effectiveness of a

process-based approach to the orchestration of dynamic adaptation, and – in a larger

context - the feasibility of exerting externalized dynamic adaptation with platforms

that choose process technology for their coordination role.

This work can be pursued further in a number of directions. As for research on the

process-based coordination of dynamic software adaptation in general, the

outstanding problems discussed in Section 6.3 may represent a valid agenda, which

can take advantage of some of the results of this work as a starting point. Among

those problems, there are methods and techniques for the engineering of open-ended

dynamic adaptation processes, and the dynamic generation of processes on the basis

of the situational knowledge of the run state of the system, in order to be able to

respond also to fully unexpected conditions. Those two problems are intertwined, and

both seem also strongly related to other two open issues: the ability to capture,

express and reason about formal knowledge that predicates not only upon the

structure, but also the dynamics of the target system, including the adaptations that

are or are not valid under certain conditions; and the selection of the right granularity

level for the fragmentation of dynamic adaptation processes, to make possible the

construction of a repertoire of process fragments that can be composed on the fly in

an open-ended way, and that may cover a wide spectrum of dynamic adaptation needs

for the target system at hand.

 216

Another open issue regards criteria and techniques for the comparative evaluation of

dynamic adaptation solutions, in general, as well as with respect to their various main

roles, including coordination. As the work on autonomic computing approaches and

systems progresses, and given their wide field of applicability, an agreed-upon set of

evaluation guidelines and practices, if not a common framework will become

increasingly necessary.

Finally, it is necessary to investigate the issue of meta-adaptation, that is, how

dynamic adaptation facilities can keep themselves in check - while at the same time

controlling an external target system - in order to preserve as well as optimize their

functionality and performance.

With respect to the specific advancement of Workflakes and in the context of the KX

platform, there are multiple aspects that can be the subjects of future work. One is

concerned with meta-adaptation: Workflakes controllers can be used to modify on the

fly the monitoring and diagnostic layers of KX, as well as tuning single sensors or

gauges. Following up on the ideas sketched in Section 6.3, another future

development regards a fuller integration and more extensive experimentation of the

platform with ADL-based behavioral models and the corresponding tools, which has

the potential to bring about architecture-driven generation of the dynamic adaptation

processes. Workflakes will also be experimented with in other application domains,

in order to better understand the usability limits and further evaluate the extent of the

benefits of the approach and the tool.

 217

8 Bibliography

[1] C.R. Hofmeister, and J.M. Purtilo, Dynamic Reconfiguration in Distributed
Systems: Adapting Software Modules for Replacement, in 13th International
Conference on Distributed Computing Systems, Pittsburgh, Pa., USA, May 25-28,
1993.

[2] F. Kon, R. Campbell, M.D. Mickunas, K. Nahrstedt, and F.J. Ballesteros. 2K,
A Distributed Operating System for Dynamic Heterogeneous Environments, in 9th
IEEE International Symposium on High Performance Distributed Computing,
Pittsburgh, Pa., USA, August 1-4, 2000.

[3] J. Magee, J. Kramer, and M. Sloman. Constructing Distributed Systems in
Conic, IEEE Transactions on Software Engineering, 15(6):663-675, June 1989.

[4] M.J. Rutherford, K. Anderson, A. Carzaniga, D. Heimbigner, and A.L. Wolf,
Reconfiguration in the Enterprise JavaBean Component Model, in IFIP/ACM
Working Conference on Component Deployment, Berlin, Germany, June 2002.

[5] P.N. Gross, S. Gupta, G. E. Kaiser, G.S. Kc, and J.J. Parekh, An Active
Events Model for Systems Monitoring, in Working Conference on Complex and
Dynamic Systems Architecture, Brisbane, Australia, December 12-14, 2001,
available at: http://www.psl.cs.columbia.edu/ftp/psl/CUCS-011-01.pdf.

[6] G. Kaiser, P. Gross, G. Kc, J. Parekh, and G. Valetto, An Approach to
Autonomizing Legacy Systems, in Workshop on Self-Healing, Adaptive and Self-
MANaged Systems (SHAMAN 2002), New York, NY, USA, June 23, 2002.

[7] G. Valetto, G. Kaiser, and G.S. Kc, A Mobile Agent Approach to Process-
based Dynamic Adaptation of Complex Software Systems, in 8th European Workshop
on Software Process Technology, Witten, Germany, June 19-21, 2001.
http://www.psl.cs.columbia.edu/ftp/psl/CUCS-001-01.pdf.

[8] G. Valetto, and G. Kaiser, Using Process Technology to Control and
Coordinate Software Adaptation, in 25th International Conference on Software
engineering (ICSE 2003), Portland, Or., USA, May 3-10, 2003.

[9] G. Valetto, Process-Orchestrated Software: Towards a Workflow Approach
to the Coordination of Distributed Systems, Ph.D. Thesis Proposal, Columbia
University, Department of Computer Science, Technical Report # CUCS-016-00,
May 2000.

[10] G. Cugola., P.Y. Cunin, S. Dami, J. Estublier, A. Fuggetta, F. Pacull, M.
Riviere, and H. Verjus, Support for Software Federations: The Pie Platform in 7th

http://www.psl.cs.columbia.edu/ftp/psl/CUCS-011-01.pdf
http://www.psl.cs.columbia.edu/ftp/psl/CUCS-001-01.pdf

 218

European Workshop on Software Process Technology, Kaprun, Austria, February 22-
25, 2000.

[11] G. Kaiser, J. Parekh, P. Gross, and G. Valetto, Kinesthetics eXtreme: An
External Infrastructure for Monitoring Distributed Legacy Systems, in 5th Annual
International Workshop on Active Middleware Services (AMS 2003), Seattle, Wa.
USA, June 25, 2003.

[12] The World Wide Web Consortium, Web Services Activity, available at:
http://www.w3.org/2002/ws/

[13] L. Lee, H. S. Nwana, N. R. Jennings, Co-ordination in Multi-Agent Systems,
in H. S. Nwana and N. Azarmi (eds.), Software Agents and Soft Computing, Lecture
Notes on Artificial Intelligence no. 1198, pp. 42-58, 1997.

[14] M. N. Huhns and M. P. Singh (eds.), Internet-based Agents: Applications and
infrastructure, special issue of IEEE Internet Computing, 1(4), July/August 1997.

[15] K. J. Werkman, Knowledge-based Model of Negotiation Using Shareable
Perspectives, in 10th International Workshop on Distributed Artificial Intelligence,
Bandera, Tx. USA, October 23-27, 1990.

[16] S. Bussmann and J. Muller, A negotiation Framework for Co-Operating
Agents, in CKBS-SIG, pp. 1-17, University of Keele, 1992.

[17] H. S. Nwana and M. Wooldridge, Software Agent Technologies, in H. S.
Nwana and N. Azarmi eds. Software Agents and Soft Computing, in Lecture Notes
on Artificial Intelligence, no. 1198, pages 59-77, 1997.

[18] T. Finin, R. Fritzon, D. McKay, R. McEntire, KQML as an Agent
Communication Language, in 3rd International Conference on Information and
Knowledge Management, Gaithersburg, Ma., USA, November 29-December 4, 1994.

[19] A. G. Cass, B. Staudt Lerner, E. K. McCall, L. J. Osterweil, S. M. Sutton Jr.,
A. Wise, Little-JIL/Juliette: A Process Definition Language and Interpreter, in 22nd
International Conference on Software Engineeering (ICSE 2000), Limerick, Ireland,
June 4-11, 2000.

[20] J. Estublier, M. Amiour and S. Dami, Building a Federation of Process
Support Systems, in Work Activity Coordination and Cooperation conference
(WACC’98); San Francisco, Ca., USA, February 22-26, 1998.

[21] I. Ben-Shaul and G. E. Kaiser, A Paradigm for Decentralized Process
Modeling, Kluwer Academic Publishers, Boston MA, 1995.

http://www.w3.org/2002/ws/

 219

[22] J. Grundy, M. Apperley, J. Hosking, W. Mugridge, A Decentralized
Architecture for Software Process Modeling and Enactment, IEEE Internet
Computing: Special Issue on Software Engineering via the Internet, 2(5): 53-62,
September/October 1998.

[23] IBM alphaWorks, BPWS4j, http://www.alphaworks.ibm.com/tech/bpws4j

[24] TIBCO, TIBCO Business Process Management,
http://www.tibco.com/resources/solutions/products/bpm_datasheet.pdf

[25] Cougaar.org, Cougaar Open Source Agent Architecture,
http://www.cougaar.org/

[26] David Jensen, Yulin Dong, Barbara Staudt Lerner, Eric K. McCall, Leon J.
Osterweil, Stanley M. Sutton, Jr., and Alexander Wise, Coordinating Agent Activities
in Knowledge Discovery Processes, in Work Activities Coordination and
Collaboration Conference (WACC 99), pages 137-146, San Francisco, Ca., USA,
February 22 1999.

[27] G. Bolcer and R. Taylor, Endeavors: a Process System Integration
Infrastructure, in 4th International Conference on Software Process (ICSP4),
Brighton, U.K., December 2-6, 1996.

[28] M. L. Griss, Q. Chen, L. J. Osterweil, G. A. Bolcer, R. R. Kessler, Agents
and Workflow – An Intimate Connection or Just Friends?, Panel report in Technology
of Object-Oriented Languages and Systems USA Conference (TOOLS-USA 99),
Santa Barbara, CA, USA, July 30- August 3, 1999.

[29] J. E. Cook and A. L. Wolf. Software process validation: Quantitatively
measuring the correspondence of a process to a model using event-based data, ACM
Transactions on Software Engineering and Methodology, 8(2): 147-176, Apr 1999.

[30] P. Horn, Autonomic Computing: IBM’s Perspective on The State of
Information Technology, at Agenda 2001 conference, Scottsdale, Az., USA, October
15, 2001, http://www.research.ibm.com/autonomic/manifesto/agenda2001_p1.html

[31] J. Knight, D. Heimbigner, A. Wolf, A. Carzaniga, J. Hill, P. Devanbu, M.
Gertz, The Willow Architecture: Comprehensive Survivability for Large-Scale
Distributed Applications, in Intrusion Tolerance Workshop, the International
Conference on Dependable Systems and Networks (DSN-2002), Washington, DC,
USA, June 2002.

[32] A.G. Ganek, T.A. Corbi, The Dawning of the Autonomic Computing Era,
IBM Systems Journal, 42(1): 5-18, January-March 2003.

http://www.alphaworks.ibm.com/tech/bpws4j
http://www.tibco.com/resources/solutions/products/bpm_datasheet.pdf
http://www.cougaar.org/
http://www.research.ibm.com/autonomic/manifesto/agenda2001_p1.html

 220

[33] InstallShield Corp, InstallShield – Software Installation and Migration for
System Adminstrators and Developers, available at: http://www.installshield.com

[34] V. Guoer, A. Bahuguna, O. Egungbohun, P. Field, C. Horwedel, and R.
Kannaujia, Implementing Automated Inventory Scanning and Software Distribution
After Auto Discovery, IBM Red Book, May 9, 2003.

[35] Marimba Inc., Marimba Embedded Management - Creating Self-Updating
Appliances and Devices, Marimba White Paper, Mountain View, Ca., USA, 2001,
http://www.marimba.com/products/datasheets/Embedded-wp-april-2001.pdf

[36] R.S. Hall, D. Heimbigner, and A.L. Wolf, A Cooperative Approach to
Support Software Deployment Using the Software Dock, in International Conference
on Software Engineering (ICSE'99), Los Angeles, Ca., USA, May 1999.

[37] C. Montangero, The Process in the Tool Syndrome: Is It Becoming Worse?,
in 9th International Software Process Workshop, Arlie, Va., USA, October 1994.

[38] C. Poellabauer, H. Abbasi, and K. Schwan, Cooperative Run-time
Management of Adaptive Applications and Distributed Resources, in ACM
Multimedia, Juan-les-Pins, France, December 1-6, 2002.

[39] J. A. Stankovic and K. Ramamritham, The Spring Kernel: A new paradigm
for real-time systems, IEEE Software, 8(3): 62–72, May 1991.

[40] D. Roşu, K. Schwan, S. Yalamanchili, and R. Jha, On Adaptive Resource
Allocation for Complex Real-Time Applications, in IEEE Real-Time Systems
Symposium, San Francisco, Ca., USA, December 3-5, 1997.

[41] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin, QoS negotiation in real-time
systems and its application to automated flight control, in IEEE Real-Time
Technology and Applications Symposium, Montreal, Canada, June 1997.

[42] A.F. Garcia, C.J. Pereira de Lucena, F. Zambonelli, A. Omicini, and J. Castro
(Eds.): Software Engineering for Large-Scale Multi-Agent Systems, Research Issues
and Practical Applications, Lecture Notes in Computer Science 2603, Springer 2003

[43] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
SETI@home: An Experiment in Public-Resource Computing, Communications of the
ACM, 45(11):56-61, November 2002.

[44] A. Reinefeld, and F. Schintke, Concepts and Technologies for a Worldwide
Grid Infrastructure, in 8th International Euro-Par Conference, Paderborn, Germany,
August 27-30, 2002.

 221

[45] J. Kiessel, J. Beard ,and P. Nielsen, Failure Recovery: A Software
Engineering Methodology for Robust Agents, in 1st International Workshop on
Software Engineering for Large-Scale Multi-Agent Systems (ICSE-SELMAS 2002),
Orlando, Fl., USA, May 19, 2002.

[46] Z. Guessoum, J.-P. Briot, and S. Charpentier, Dynamic and Adaptive
Replication for Large-Scale Reliable Multi-Agent Systems, in Proceedings of the 1st
International Workshop on Software Engineering for Large-Scale Multi-Agent
Systems (ICSE-SELMAS 2002), Orlando, Fl., USA, May 19, 2002.

[47] S.A. Jarvis, D.P. Spooner, H.N. Lim Choi Keung, J.R.D. Dyson, L. Zhao,
and G.R. Nudd, Performance-based Middleware Services for Grid Computing, in 5th
International Workshop on Active Middleware Services (AMS 2003), Seattle, Wa.
USA, June 2003.

[48] BBN Technologies, Advanced Logistics Project,
http://www.bbn.com/abs/alp.html

[49] Defense Advanced Research Project Agency (DARPA), UltraLog Program,
http://www.ultralog.net/

[50] J. Cao, S.E. Jarvis, G.R. Nudd, and S. Saini, GridFlow: Workflow
Management for Grid Computing, in 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid 2003), Tokyo, Japan, May 12-14, 2003.

[51] T.E. Bihari, K. Schwan, Dynamic Adaptation of Real-Time Software, ACM
Transactions on Computer Systems, 9(2):143-174, May 1991.

[52] D. Rosu, K. Schwan, S. Yalamanchili, FARA - A Framework for Adaptive
Resource Allocation in Complex Real-Time Systems, in 4th IEEE Real-Time
Technology and Applications Symposium, Denver, Co., USA, June 1998.

[53] P. Oriezy, M.M. Gorlick, R.N. Taylor, D. Heimbinger, G. Johnson, N.
Medvidovic, A. Quilici, D.S. Rosenblum, and A.L. Wolf, An Architecture-Based
Approach to Self-Adaptive Software, IEEE Intelligent Systems 14(3): 54-62,
May/June 1999.

[54] B. Schmerl, and D. Garlan, Exploiting Architectural Design Knowledge to
Support Self-repairing Systems, in 14th International Conference on Software
Engineering and Knowledge Engineering, Ischia, Italy, July 2002.

[55] W. Gu, G. Eisenhauer, and K. Schwan, Falcon: On-line Monitoring and
Steering of Parallel Programs, in Concurrency: Practice and Experience, 10(9): 699-
736, August 1988.

http://www.ultralog.net/

 222

[56] J. Salasin, Dynamic Assembly for System Adaptability, Dependability, and
Assurance (DASADA), http://www.darpa.mil/ipto/programs/dasada/index.htm

[57] G. Kaiser, Autonomizing Legacy Systems, invited talk at the Almaden
Institute Symposium on Autonomic Computing, April 10-12 2002,
http://www.almaden.ibm.com/institute/pdf/KaiserGail.pdf

[58] B. Balzer, Probe Technology Adaptor Design, February 2001, available at:
http://schafercorp-
ballston.com/dasada/2001WinterPI/ProbeTechnologyAdaptorDesign.ppt

[59] D. Garlan, B. Schmerl, and J. Chang, Using Gauges for Architecture-Based
Monitoring and Adaptation, in Working Conference on Complex and Dynamic
Systems Architecture, Brisbane, Australia, December 12-14, 2001.

[60] E. Kasten, P. K. McKinley, S. Sadjadi, and R. Stirewalt, Separating
introspection and intercession in metamorphic distributed systems, in IEEE
Workshop on Aspect-Oriented Programming for Distributed Computing, Vienna,
Austria, July 2-5, 2002.

[61] E.M. Dashofy, A. van der Hoek, and R.N. Taylor, An Infrastructure for the
Rapid Development of XML-based Architecture Description Languages, in 24th
International Conference on Software Engineering, Orlando, Fl. USA, May 2002.

[62] D. Garlan, S. Cheng, and B. Schmerl, Increasing System Dependability
through Architecture-based Self-repair, in 2nd ICSE Workshop on Software
Architectures for Dependable Systems (WADS 2003), Portland, Or., USA, May
2003.

[63] G. Heineman, Active Interface Development Environment (AIDE).
http://www.cs.wpi.edu/~heineman/dasada/

[64] P. Pazandak, and D. Wells, ProbeMeister – Distributed Runtime Software
Instrumentation, in 1st workshop on Unanticipated Software Evolution (USE 2002),
Malaga, Spain, June 10-14, 2002, http://www.objs.com/ProbeMeister/paper/020523-
probemeister.pdf

[65] R.M. Balzer, and N.M. Goldman, Mediating Connectors: A Non-ByPassable
Process Wrapping Technology, DARPA Information Survivability Conference &
Exposition, Vol. 2, January 2000.

[66] D.L. Wells, and P.Pazandak, Taming Cyber Incognito – Tools for Surveying
Dynamic/Reconfigurable Software Landscapes, in Working Conference on Complex
and Dynamic Systems Architecture, Brisbane, Australia, December 12-14, 2001.

http://www.darpa.mil/ipto/programs/dasada/index.htm
http://www.almaden.ibm.com/institute/pdf/KaiserGail.pdf
http://www.cs.wpi.edu/~heineman/dasada/
http://www.objs.com/ProbeMeister/paper/020523-probemeister.pdf
http://www.objs.com/ProbeMeister/paper/020523-probemeister.pdf

 223

[67] A. Rocha, G. Valetto, E. Paschetta, and S. Heikkinen, Continuous On-Line
Validation of Web Services, in International Conference on Electronic Publishing
(ELPUB 2002), Karlovy Vary, Czech Republic, November 6-8, 2002.

[68] P. Deussen, G. Valetto, G. Din, T. Kivimaki, S. Heikkinen, and A. Rocha,
Continuous On-Line Validation for Optimized Service Management, in EURESCOM
Summit 2002, Hiedelberg, Germany, October 21-24, 2002.

[69] Tree and Tabular Combined Notation, version 3,
ITU-T Recommendation Z.140, 2001, available at: http://www.itu.int/ITU-
T/studygroups/com10/languages/Z.140_0701_pre.pdf

[70] G. Kaiser, A. Stone, and S. Dossick, A Mobile Agent Approach to
Lightweight Process Workflow, in International Process Technology Workshop
(IPTW’99), Grenoble, France, September, 1-3 1999, available at:
http://www.psl.cs.columbia.edu/ftp/psl/CUCS-021-99.pdf.

[71] H. Lutfiyya, G. Molenkamp, M. Katchabaw, and M. Bauer, Issues in
Managing Soft QoS Requirements in Distributed Systems Using a Policy-Based
Framework, in 3rd IEEE International Workshop on Policies for Distributed Systems
and Networks, Bristol, U.K., January 29-31,2001.

[72] J.M. Cobleigh, L.J. Osterweil, A. Wise, and B. Staudt Lerner, Containment
Units: A Hierarchically Composable Architecture for Adaptive Systems, in 10th
International Symposium on the Foundations of Software Engineering (FSE 10),
Charleston, Sc. USA, November 20-22, 2002.

[73] S.K Shirvastava, L. Bellissard, D. Feliot, M. Herrmann, N. De Palma, and
S.M. Wheater, A Workflow and Agent based Platform for Service Provisioning, in 4th
IEEE/OMG International Enterprise Distributed Object Computing Conference,
Makuhari, Japan, September 25-28, 2000.

[74] J. Liu, B. Li, and Y. Zang, Adaptive Video Multicast over the Internet, IEEE
Multimedia, 10(1):22-33, January-March, 2003.

[75] S. McCanne, V. Jacobson, and M. Vetterli, Receiver-Driven Layered
Multicast, in ACM SIGCOMM’96, Stanford, Ca. USA, August 26-30, 1996.

[76] W. Li, Overview of the Fine Granularity Scalability in MPEG-4 Video
Standard, IEEE Transactions on Circuits and Systems for video Technology,
11(3):301-317, March 2001.

[77] L. Herger, K. Iwano, P. Pattnaik, J.J. Ritsko, and A.G. Davis (eds.),
Autonomic Computing, IBM Systems Journal, 42(1), January-March 2003.

http://www.itu.int/ITU-T/studygroups/com10/languages/Z.140_0701_pre.pdf
http://www.itu.int/ITU-T/studygroups/com10/languages/Z.140_0701_pre.pdf
http://www.psl.cs.columbia.edu/ftp/psl/CUCS-021-99.pdf

 224

[78] R. Haas, P. Droz, and B. Stiller, Autonomic Service Deployment in Networks,
IBM Systems Journal 42(1):150–164, January-March 2003.

[79] V. Markl, G. M. Lohman, and V. Raman, LEO: An Autonomic Query
Optimizer for DB2, IBM Systems Journal 42(1): 98–106, January-March 2003.

[80] J. Appavoo, K. Hui, C. A. N. Soules, R. W. Wisniewski, D. M. Da Silva, O.
Krieger, M. A. Auslander, D. J. Edelsohn, B. Gamsa, G. R. Ganger, P. McKenney,
M. Ostrowski, B. Rosenburg, M. Stumm, and J. Xenidis, Enabling Autonomic
Behavior in Systems Software with Hot Swapping, IBM Systems Journal 42(1):60–76,
January-March 2003.

[81] K. Whisnant, Z. T. Kalbarczyk, and R. K. Iyer, A System Model for
Dynamically Reconfigurable Software, IBM Systems Journal 42(1):45–59, January-
March 2003.

[82] D. M. Yellin, Competitive Algorithms for the Dynamic Selection of
Component Implementations, IBM Systems Journal, 42(1):85–97, January-March
2003.

[83] A. Abbondanzio, Y. Aridor, O. Biran, L. L. Fong, G. S. Gold-szmidt, R. E.
Harper, S. M. Krishnakumar, G. Pruett, and B.-A. Yassur, Management of
Application Complexes in Multitier Clustered Systems, IBM Systems Journal
42(1):189–195, January-March 2003.

[84] B.N. Bershad, S. Savage, P. Pardyn, E.G. Sirer, M.E. Fiuczynski, D. Becker,
C. Chambers, and S. Eggers, Extensibility, Safety and Performance in the SPIN
Operating System, in ACM Symposium on Operating System Principles, Copper
Mountain resort, Co., USA, December 1995.

[85] M. Seltzer, and C. Small, Self-monitoring and Self-adapting Operating
Systems, in 6th Workshop on Hot Topics in Operating Systems, Cape Cod, Ma., USA,
May 5-6, 1997.

[86] IBM Corporation - Research Division, The K42 Project,
http://www.research.ibm.com/K42.

[87] RM 2000 – Workshop on Reflective Middleware, IBM Palisades Executive
Conference Center, NY, USA, April 7-8, 2000, available at:
http://www.comp.lancs.ac.uk/computing/RM2000/

[88] RM2003 - the 2nd Workshop on reflective and Adaptive Middleware, Rio de
Janeiro, Brazil, June 17, 2003, available at:
http://www.cs.wustl.edu/~corsaro/RM2003/index.html

http://www.research.ibm.com/k42
http://www.comp.lancs.ac.uk/computing/RM2000/

 225

[89] G. Coulson, and N. Parlavantzas (eds.), Reflective Middleware, IEEE Journal
on Distributed Systems Online, http://dsonline.computer.org/middleware/RM.htm

[90] G.I Zachary, A.Y. Levy, D.S. Weld, D. Florescu, M. Friedman, Adaptive
Query Processing for Internet Applications, IEEE Data Engineering Bulletin, 23(2),
June 2000,

[91] R.A. Hankins, J.M. Patel, Data Morphing: An Adaptive, Cache-Conscious
Storage Technique, in 29th Conference on Very Large Databases (VLDB 2003),
Berlin, Germany, September 9-12, 2003.

[92] S. Parastatidis, and P. Watson, NEReSC Core Grid Middleware, in UK e-
Science All-hands Meeting 2003, Nottingham, UK, September 2-4, 2003.

[93] F. Kon, F. Costa, R. Campbell, and G. Blair, The Case for Reflective
Middleware, Communications of the ACM, 45(6): 33-38, June 2002

[94] The World Wide Web Consortium, Web Services Choreography Working
Group, http://www.w3.org/2002/ws/chor/

[95] S.Thatte (ed.), Business Process Execution Language for Web Services
Version 1.1, May 2003, ftp://www6.software.ibm.com/software/developer/library/ws-
bpel.pdf

[96] N. Carriero and D. Gelernter, Coordination Languages and their
Significance, Communications of the ACM,35(2):97-107, February 1992.

[97] D. Gelernter, Generative Communication in Linda, ACM Transactions on
Programming Languages and Systems, 7(1): 80-112, Jan. 1985.

[98] N. Carriero and D. Gelernter, Linda in Context, Communications of the
ACM, 32(4), April 1989.

[99] H.P. Nii, Blackboard Systems Part One, AI Magazine, 7(2): 38-53, 1986.

[100] H.P. Nii, Blackboard Systems Part Two, AI Magazine, 7(3): 82-106, 1986.

[101] Sun Microsystems, Inc., JavaSpaces Specification, Technical Report, July
1998.

[102] G. A. Papadopolous and F. Arbab, Coordination Models and Languages, in
M.V. Zelkowits (ed.), Advances in Computers: the Engineering of Large Systems,
Vol. 46, Academic-Press, The Netherlands, 1998.

http://dsonline.computer.org/middleware/RM.htm
http://www.w3.org/2002/ws/chor/

 226

[103] N Medvidovic and R. N. Taylor, A Classification and Comparison
Framework for Software Architecture Description Languages, IEEE Transactions on
Software Engineering, 26(1), January 2000.

[104] M. Shaw, Procedure Calls are the Assembly Language of Software
Interconnections: Connectors Deserve First-Class Status, in ICSE Workshop on
Studies of Software Design, Baltimore, Ma., USA, May 17-18, 1993.

[105] L. Brownston, R. Farrell, E. Kant, and N. Martin Programming Expert
Systems in OPS5: An Introduction to Rule-based Programming, Addison-Wesley,
Reading, Ma., USA, 1985.

[106] G. Riley, and J.C. Giarratano, CLIPS Reference Manual, PWS Publishing
Company, 1998.

[107] J.M. Andreoli, S. Freeman, and R. Pareschi, The Coordination Language
Facility: Coordination of Distributed Objects, Theory and Practice of Object
Systems, 2(2): 77-94, 1996.

[108] N.S. Barghouti, Supporting Cooperation in the Marvel Process-Centered
SDE, in 5th ACM SIGSOFT Symposium on Software Development Environments,
Tyson's Corner VA., USA, December 1992.

[109] E.P. Katz, A Multiple Rule Engine-Based Agent Control Architecture, in the
6th International Conference of Intelligent Engineering Systems (INES 2002), Opatija,
Croatia, May 26-28, 2002.

[110] FIPA, Foundation for Intelligent Physical Agents, http://www.fipa.org.

[111] B.N. Grosof, D.W. Levine, H.Y. Chan, C.J. Parris, and J.S. Auerbach,
Reusable Architecture for Embedding Rule-based Intelligence in Information Agents,
in Workshop on Intelligent Information Agents, ACM Conference on Information
and Knowledge Management (CIKM-95), Baltimore, Ma. USA, December 1995.

[112] J.P. Bigus, The Agent Building and Learning Environment, in 4th
International Conference on Autonomous Agents, Barcelona, Catalonia, Spain, June
3-7, 2000.

[113] R. Ribbler, J. Vetter, and H. Simitci, Autopilot: Adaptive Control of
Distributed Applications, in 7th IEEE Symposium on High-Performance Distributed
Computing, Chicago, Il., USA, July 1998.

[114] H. Liu, and M. Parashar, DIOS++: A Framework for Rule-based Autonomic
Management of Distributed Scientific Applications, in 9th International Euro-Par
Conference, Klagenfurt, Austria, August 2003.

 227

[115] J. L. Austin, How to Do Things with Words, Cambridge, Ma., USA, Harvard
University Press, 1962.

[116] J. R. Searle, Speech Acts, Cambridge, Ma., USA, Cambridge University
Press, 1969.

[117] M. Agarwal, V. Bhat, Z. Li, H. Liu, B. Khargharia, V. Matossian, V.Putty, C.
Schmidt, G. Zhang, S. Hariri and M. Parashar AutoMate: Enabling Autonomic
Applications on the Grid, in 5th International Active Middleware Services Workshop
(AMS2003), Seattle, Wa., USA, June 2003.

[118] S. Hariri, L. Xue, H. Chen, M. Zhang, S. Pavuluri, S. Rao, AUTONOMIA: An
Autonomic Computing Environment, in 22nd International Performance Computing
and Communications Conference, Phoenix, Az., USA, April 9-11, 2003.

[119] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills III, and Y. Diao,
ABLE: A toolkit for building multiagent autonomic systems, IBM Systems Journal,
41(3), July-September 2002.

[120] P. Ciancarini and A. L. Wolf, Foreword to the Proceedings of the 3rd
International Conference on Coordination Languages and Models
(COORDINATION 99), Amsterdam, The Netherlands, April 26-28, 1999.

[121] A. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P.
Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W.
Tetzlaff, J. Traupman, and N. Treuhaft. Recovery-Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies, UC Berkeley Computer
Science Technical Report UCB//CSD-02-1175, March 15, 2002.

[122] G. Kaiser, J. Parekh, P. Gross, and G. Valetto, Retrofitting Autonomic
Capabilities onto Legacy Systems, Technical Report CUCS-026-03, Columbia
University, Department of Computer Science, October 2003, available at:
http://www.cs.columbia.edu/~library/TR-repository/reports/reports-2003/cucs-026-
03.pdf.

[123] R. Khalaf, N. Mukhi, and S. Weerawarana, Service-Oriented Composition in
BPEL4WS, in WWW 2003 conference, Budapest, Hungary, May 2003, available at:
http://www2003.org/cdrom/papers/alternate/P768/choreo_html/p768-khalaf.htm.

[124] A. Shah and G. Kaiser, Decentralized Information Spaces for Composition
and Unification of Services, in Object-Oriented Web Services Workshop (OOWS),
OOPSLA Conference, Vancouver, Canada, November 2002.

[125] A. Lazovik, M. Aiello, and M. Papazoglu, Planning and monitoring the
execution of web service requests, in 1st International Conference on Service
Oriented Computing (ICSOC), Trento, Italy, November 2003.

http://www2003.org/cdrom/papers/alternate/P768/choreo_html/p768-khalaf.htm

 228

[126] E. Tzilla, R.E. Filman, A. Bader, Aspect-oriented programming:
Introduction, in Communication of the ACM, 44(10):29-32, October 2001.

[127] D.C. Schmidt, R. Bector, D. Levine, S. Mungee, and G. Parulkar, An ORB
end system architecture for statically scheduled real-time applications, in IEEE
Workshop on Middleware for Real-Time Systems and Services, San Francisco Ca.,
USA, December 2-5, 1997.

[128] D. Harrington, R. Presuhn, and B. Wijnen, An Architecture for Describing
Simple Network Management Protocol (SNMP) Management Frameworks, Internet
RFC 3411, December 2002, available at: http://www.ietf.org/rfc/rfc3411.txt

[129] Sun Microsystems, Inc., JSR-000003 JavaTM Management Extensions
(JMXTM) specifications, Maintenance Release 2, available at:
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html

[130] Distributed Management Task Force, Inc, Web-Based Enterprise
Management (WBEM) Initiative, http://www.dmtf.org/standards/wbem

[131] Microsoft Corp., Windows Management Interface (WMI) Reference,
available at: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wmisdk/wmi/wmi_reference.asp

[132] S. Robertson, E.V. Siegel, M. Miller, and S.J. Stolfo, Surveillance Detection
in High Bandwidth Environments, in DARPA DISCEX III Conference, Washington
DC. USA, April 22-24, 2003

[133] SANS, What is Host-Based Intrusion Detection?, Intrusion Detection FAQ,
http://www.sans.org/resources/idfaq/host_based.php.

[134] A. Cichocki, A. Helal, M. Rusinkiewicz, and D. Woelk. Workflow and
Process Automation—Concepts and Technology, Kluwer Academic Publishers, 1998.

[135] D. Heimbigner, The ProcessWall: A Process Server Approach to Process
Programming, in 5th ACM/SIGSOFT Conference on Software Development
Environments, Washington, D.C., USA, December 9-11, 1992.

[136] A. Wise, A.G. Cass, B. Staudt Lerner, E.K. McCall, L.J. Osterweil, and S.M.
Sutton Jr., Using Little-JIL to Coordinate Agents in Software Engineering, in
Automated Software Engineering Conference, Grenoble, France, September 11-15,
2000.

[137] S. Ahuja, N. Carriero and D. Gelernter, Linda and Friends, IEEE Computer
19(8): 26-34, 1986.

http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
http://www.dmtf.org/standards/wbem
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_reference.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_reference.asp
http://www.sans.org/resources/idfaq/host_based.php

 229

[138] R. Prieto-Diaz and J.M. Neighbors, Module Interconnection Languages.
Journal of Systems and Software, 6(4): 307-334, November 1986.

[139] F. DeRemer and H.H. Kron, Programming-in-the-large versus
Programming-in-the-small, IEEE Transactions on Software Engineering, 2(2):80-86,
June 1976.

[140] . Wiederhold, P. Wegner, and S. Ceri, Toward Megaprogramming: a
paradigm for Component-Based Programming, Communications of the ACM,
35(11): 89-99, November 1992.

[141] D.E. Perry and A.L. Wolf, Foundations for the Study of Software
Architectures, ACM SIGSOFT Software Engineering Notes, 17(4):40-52, October
1992.

[142] D. Garlan and M. Shaw, An Introduction to Software Architecture, Advances
in Software Engineering and Knowledge Engineering, vol. 2, December 1993.

[143] H. S. Nwana and D. T. Ndumu, An Introduction to Agent Technology, in H.
S. Nwana and N. Azarmi eds. Software Agents and Soft Computing, Lecture Notes in
Artificial Iintellingence no. 1198, pages 3-26, 1997.

[144] J. Widom, and S. Ceri. Triggers and Rules For Advanced Database
Processing. Morgan Kaufmann Publishers Inc., 1996.

[145] K.R. Dittrich, S. Gatziu, and A. Geppert. The Active Database Management
System Manifesto: a Rulebase of ADBMS Features, in 2nd International Workshop on
Rules in Database Systems, RIDS’95, Glyfada, Athens, Greece, September 1995.

[146] COORDINATION – International Conference on Coordination Models and
Languages, http://music.dsi.unifi.it/coordination/default.htm

[147] R. Sterritt, Discovering Rules for Fault Management, in IEEE International
Conference on the Engineering of Computer Based Systems (ECBS), Washington
DC., USA, April 17-20, 2001.

[148] BEA Systems, Inc. Introducing WebLogic Integration, available at:
http://edocs.bea.com/wli/docs81/overview/index.html

[149] TIBCO Software, Inc., TIBCO BusinessWorks,
http://www.tibco.com/software/business_integration/businessworks.jsp

[150] I. Z. Ben-Shaul and G. E. Kaiser, Federating Process-Centered
Environments: the Oz Experience, Journal of Automated Software Engineering,
5(1):97-132, January 1998.

http://music.dsi.unifi.it/coordination/default.htm
http://edocs.bea.com/wli/docs81/overview/index.html
http://www.tibco.com/software/business_integration/businessworks.jsp

 230

[151] F. Leymann, Web Services Flow Language (WSFL 1.0), May 2001, available
at: http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[152] S. Thatte, XLANG: Web Services for Business Process Design, June 2001,
available at: http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

[153] ebXML Business Process Project Team, ebXML Business Process
Specification Schema, available at: http://www.ebxml.org/specs/ebBPSS.pdf

[154] W.M.P. van der Aalst, A.H.M. Ter Hofstede, B. Kiepuszewski, and A.P.
Barros, Workflow Patterns, Journal of Distributed. Parallel Databases, 14(1):5-51,
July 2003.

[155] P.Wohed, W.M.P. van der Aalst, M.Dumas, and A.M. ter Hofstede, Pattern
Based Analysis of BPEL4WS, QUT Technical Report FIT-TR-2002-04, Queensland
University of Technology, Brisbane, Australia, 2002.

[156] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf, Design and Evaluation of a
Wide-Area Event Notification Service, ACM Transactions on Computer Systems,
19(3):332-383, August 2001.

[157] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps, Content-based
routing with Elvin4. in Australian UNIX and Open Systems User Group Winter
Conference (AUUG2K), Canberra, Australia, June 28-30, 2000.

[158] G. Piccinelli, and L. Mokrushin, Dynamic e-Service Composition in DySCo,
in 21st International Conference on Distributed Computing Systems Workshops
(ICDCSW '01), Mesa, Az., USA, April 16 - 19, 2001.

[159] A. Keromytis, J. Parekh, P.N. Gross, G. Kaiser, V. Misra, J. Nieh, D.
Rubenstein, and S. Stolfo, A Holistic Approach to Service Survivability, in 1st ACM
Workshop on Survivable and Self-Regenerative Systems, Fairfax, Va., USA, October
31, 2003.

[160] BBN Technologies, Cougaar Developers’ Guide, available at:
http://cougaar.org/docman/view.php/17/57/CDG_11_0.pdf

[161] D.L. McGuinness, and F. van Harmelen (eds.), OWL Web Ontology
Language Overview, a W3C Recommendation, February 2004, available at
http://www.w3.org/TR/owl-features/

[162] Sun Microsystems, Inc., Java Native Interface Specifications, available at:
http://java.sun.com/j2se/1.4.2/docs/guide/jni/spec/jniTOC.html

[163] BEA Systems, Inc. Introduction to WebLogic Server and WebLogic Express,
available at: http://edocs.bea.com/wls/docs81/intro/index.html

http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.ebxml.org/specs/ebBPSS.pdf
http://csdl.computer.org/comp/proceedings/icdcsw/2001/1080/00/1080toc.htm
http://csdl.computer.org/comp/proceedings/icdcsw/2001/1080/00/1080toc.htm
http://cougaar.org/docman/view.php/17/57/CDG_11_0.pdf
http://www.w3.org/TR/owl-features/
http://java.sun.com/j2se/1.4.2/docs/guide/jni/spec/jniTOC.html
http://edocs.bea.com/wls/docs81/intro/index.html

 231

[164] C. Gage, Writing Custom Advisors for IBM Network Dispatcher – A simple
way to enhance load blancing, February 2001, available at: http://www-
106.ibm.com/developerworks/library/ibm-cust/?dwzone=ibm

[165] Sun Microsystems, Inc, Jini Network Technology,
http://www.sun.com/software/jini/

[166] D. Garlan, R.T. Monroe, and D. Wile, Acme: Architectural Description of
Component-Based Systems, in G.T. Leavens, and M. Sitaraman, (eds), Foundations of
Component-Based Systems, Cambridge University Press, 2000, pp. 47-68.

[167] Carnegie Mellon University - ABLE Group, AcmeStudio – Supporting
architectural design, analysis and interchange, available at: http://www-
2.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html

[168] ISI, GeoWorlds GIS System. http://www.isi.edu/geoworlds/

[169] B. Nuseibeh, and S. Easterbrook, Requirements Engineering: A Roadmap, in
23rd International Conference on Software Engineering (ICSE 2001), Toronto,
Canada, May 12-19, 2001.

[170] O. Babaoglu, H. Meling, and A. Montresor, A Framework for the
Development of Agent-based Peer-to-Peer Systems, in 22nd International Conference
on Distributed Computing Systems (ICDCS’02), Vienna, Austria, July 2002.

[171] A. Montesor, H, Meling, and O. Babaoglu, Load-balancing through a Swarm
of Autonomous Agents, in 1st International Workshop on Agents and Peer-to-Peer
Computing, Bologna, Italy, July 2002.

[172] R.A. Brooks, A Robust Layered Control System for a Mobile Robot, IEEE
Journal of Robotics and Automation, 2(1):14-23, April 1986.

[173] S. Benarif, A. Ramdane-Cherif, and N. Levy, A Multi-agent Platform for
Reconfiguration, Adaptation and Evolution of a System at Architectural Level, in 2nd
International Workshop on Software Engineering for Large-Scale Multi-Agent
Systems (ICSE-SELMAS 2003), Portland Or, USA, May 2003.

[174] T.Murata and N.H. Minsky, On Monitoring and Steering in Large-Scale
Multi-Agent Systems, in 2nd International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems (ICSE-SELMAS 2003), Portland Or, USA, May
2003.

[175] J. Kiessel, J. Beard, P. Nielsen, Failure Recovery: A Software Engineering
Methodology for Robust Agents, in 1st International Workshop on Software

http://www-106.ibm.com/developerworks/library/ibm-cust/?dwzone=ibm
http://www-106.ibm.com/developerworks/library/ibm-cust/?dwzone=ibm
http://www.sun.com/software/jini/
http://www-2.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html
http://www-2.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html
http://www.isi.edu/geoworlds/

 232

Engineering for Large-Scale Multi-Agent Systems (ICSE-SELMAS 2002), Orlando
Fl. USA, May 2002.

[176] Z. Guessoum, J.P. Briot, S. Charpentier, Dynamic and Adaptive Replication
for Large-Scale Reliable Multi-Agent Systems, in 1st International Workshop on
Software Engineering for Large-Scale Multi-Agent Systems (ICSE-SELMAS 2002),
Orlando Fl. USA, May 2002.

[177] M. Sloman and E. Lupu. Security and Management Policy Specification,
IEEE Network, 16(2):10-19, March-April 2002.

[178] The IETF Policy Framework Working Group, Policy Framework, available
at: http://www.ietf.org/html.charters/policy-charter.html

[179] S. Uttamcandani, C. Talcott, and D. Pease, Eos: An Approach of Using
Behavior Implications for Policy-based Self-Management, in 14th IFIP/IEEE
International Workshop on Distributed Systems: Operations and Management,
Heidelberg, Germany, October 20-22, 2003.

[180] K. Kleinmann, R. Lazarus, and Ray Tomlinson, An Infrastructure for
Adaptive Control of Multi-Agent Systems, in IEEE International Conference on the
Integration of Knowledge Intensive Multi-Agent Systems (KIMAS’03), Boston, Ma.
USA, September 30-October 3, 2003.

[181] O.P. Kreidl, and T.M. Frazier, Feedback Control Applied to Survivability: A
Host-Based Autonomic Defense System, IEEE Transactions on Reliability, 53(1):148-
166, March 2004.

[182] S. Porcarelli, M. Castaldi, F. Di Giandomenico, A. Bondavalli, and P.
Inverardi, An Approach to Manage Reconfiguration in Fault-Tolerant Distributed
Systems, in 2nd ICSE Workshop on Software Architectures for Dependable Systems
(WADS 2003), Portland, OR., USA, May 2003.

[183] A. Keller, J.L. Hellerstein, J.L. Wolf, K.-L. Wu, V. Krishnan, The CHAMPS
System: Change Management with Planning and Scheduling, in 9th IEEE/IFIP
Network Operations and Management Symposium (NOMS 2004), Seoul, Korea,
April 2004, to appear.

[184] T. Liu and J.R. Kender, Time-Constrained Dynamic Semantic Compression
for Video Indexing and Interactive Searching, in IEEE Conference on Computer
Vision and Pattern Recognition, Kauai Marriot, Hawaii, USA, December 9-14, 2001.

[185] D.L. Mills, Network Time Protocol, Internet RFC 958, December 2002,
available at: http://www.ietf.org/rfc/rfc958.txt

http://www.ietf.org/html.charters/policy-charter.html
http://www.ietf.org/rfc/rfc958.txt

 233

[186] L. Gautier and C. Diot, Design and Evaluation of MiMaze, a Multi-Player
Game on the Internet, in International Conference on Multimedia Computing and
Systems, Austin, Tx, USA, June 28-July 1, 1998.

[187] L. Santi, A User-mode Traffic Shaper for TCP/IP Networks, available at:
http://freshmeat.net/projects/shaperd/

[188] Suhit Gupta and Gail Kaiser A Virtual Environment for Collaborative
Distance Learning With Video Synchronization, in 7th IASTED International
Conference on Computers and Advanced Technology in Education, Aug. 2004, to
appear.

[189] S. E. Dossick and G. E. Kaiser. Chime: A metadata-based distributed
software development environment, in Joint Seventh European Software Engineering
Conference and Seventh ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, Toulouse, France, September 1999.

[190] S. X. Liang, J. Puett, Luqi, Perspective-Based Architectural Approach for
Dependable Systems, in 2nd ICSE Workshop on Software Architectures for
Dependable Systems (WADS 2003), Portland, Or., USA, May 2003.

[191] Rogério de Lemos, Cristina Gacek, and Alexander Romanovsky (eds.),
Proceedings of the 1st ICSE Workshop on Software Architectures for Dependable
Systems (WADS 2002), Orlando, Fl. USA, May 25, 2002, available at:
http://www.cs.kent.ac.uk/events/conf/2002/wads/proceedingsW12.pdf

[192] Rogério de Lemos, Cristina Gacek, and Alexander Romanovsky (eds.),
Proceedings of the 2nd ICSE Workshop on Software Architectures for Dependable
Systems (WADS 2003), Portland, Or., USA, May 2003, available at:
http://www.cs.kent.ac.uk/events/conf/2003/wads/Proceedings/wads2003.pdf

[193] N. Sample, D. Beringer, L. Melloul, G. Wiederhold, CLAM: Composition
Language for Autonomous Megamodules, in 3rd International Conference on
Coordination Models and Languages (COORD'99), Amsterdam, The Netherlands,
April 26-28, 1999.

[194] H. Herbst, Business Rule-Oriented Conceptual Modeling, Physica-Verlag
Heidelberg, Germay, June 1997.

[195] Microsoft Corp., Microsoft BizTalk Server: Home, available at:
http://www.microsoft.com/biztalk/

[196] IBM Corp., WebSphere MQ Workflow, available at: http://www-
306.ibm.com/software/integration/wmqwf/

http://freshmeat.net/projects/shaperd/
http://www.cs.kent.ac.uk/events/conf/2003/wads/Proceedings/wads2003.pdf
http://www-306.ibm.com/software/integration/wmqwf/
http://www-306.ibm.com/software/integration/wmqwf/

234

[197] Integration Definition for Function Modeling, IDEF0, Federal Information
Processing Standards Publications, December 1993.

[198] Workflow Management Coalition, Workflow Process Definition Interface –
XML Process Definition Language (XPDL), October 2002, available at:
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf

[199] F. Ren, The Marketplace of Enterprise Application Integration, February
2002, available at: http://www.geocities.com/ffren/eai.html

[200] B. Peuschel and W. Schäfer, Concepts and Implementation of a Rule-based
Process Engine, in 14th International Conference on Software Engineering (ICSE
1992), Melbourne, Australia, May 1992.

[201] F. Casati, A Discussion on Approaches to Handling Exceptions in Workflows,
in CSCW98 - Towards Adaptive Workflow Workshop, Seattle, Wa. November 14,
1998.

[202] Microsoft Corp., Microsoft Dynamic Systems Initiative Overview, March
2004, available at: of Colorado, 1998.

[203] P. Oreizy, N. Medvidovic, and R. Taylor, Architecture-Based Runtime
Software Evolution, in International Conference on Software Engineering 1998
(ICSE’98), Kyoto, Japan, April 19-25, 1998.

[204] A. Bondavalli, I. Mura, S. Chiaradonna, R. Filippini, S. Poli, and F.
Mandrini, DEEM: a tool for the dependability modeling and evaluation of multiple
phased systems, in Dependable Systems and Networks, New York, USA, 2000.

http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf
http://www.geocities.com/ffren/eai.html

